Investigating Frictional Forces and Spring Extension

Click For Summary

Homework Help Overview

The problem involves a spring attached to a block on a horizontal surface with friction, and a hanging block connected via a pulley. The objective is to determine the frictional force acting on the block and the maximum extension of the spring.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss applying Newton's second law to analyze forces acting on both blocks, questioning how to find acceleration and tension in the system.
  • There is mention of using conservation of energy to relate initial and final energy states, with some uncertainty about how to incorporate kinetic and potential energy.
  • Some participants clarify the distinction between static and kinetic friction, emphasizing the need to calculate kinetic friction for the problem.
  • Questions arise regarding the correct application of Hooke's law and the relationship between tension and spring extension.

Discussion Status

Participants are exploring various approaches to the problem, including force analysis and energy conservation. Some guidance has been provided regarding the calculation of kinetic friction and the need to determine net forces before finding maximum spring extension. However, there is no explicit consensus on the best method to proceed.

Contextual Notes

Participants note the importance of distinguishing between static and kinetic friction, and there is some confusion regarding the setup of the problem, particularly the roles of the spring and string in the system.

  • #31
yus310 said:
Yeah.. you're right... but that was just a typo in the previous post, even when I do (m2g-f)/k... I still get the half of the correct answer. When I do it applying energy and work, I get the correct answer... But still... why can't I use Newton's laws to get the correct answer. It makes no sense? Why is it half the answer?
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions. Looking again at the simple case of a 2kg mass hanging from a spring of spring constant k =60N/m, and using g=10m/s/s, then for the case where the mass is slowly released, using Newton, F_s = mg = 20N, and since x=F_s/k, x = 1/3m. But for the case where the mass is quickly released from rest, then using energy methods,
1/2kx^2 = mgx, solve x = 2mg/k = 40/60 =2/3m, which is the maximum extension of the spring, and twice the equilibrium extension.
 
Physics news on Phys.org
  • #32
PhanthomJay said:
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions. Looking again at the simple case of a 2kg mass hanging from a spring of spring constant k =60N/m, and using g=10m/s/s, then for the case where the mass is slowly released, using Newton, F_s = mg = 20N, and since x=F_s/k, x = 1/3m. But for the case where the mass is quickly released from rest, then using energy methods,
1/2kx^2 = mgx, solve x = 2mg/k = 40/60 =2/3m, which is the maximum extension of the spring, and twice the equilibrium extension.

... 2/3 is not the answer. But I get what you are trying to explain. I think I have to relate work & energy.

Emech=-Etherm (Energy Dissipated by friction)

Or
Wnet=Wfriction

Ef-Ei=-f*x
(Uf+Ufsp+Kf)-(U+Uisp+Ki)=-f*x
(Uf +Usp+0)-(0+0+0)
1/2kx^2+m2g(-x)+0=-f*x...

... x(1/2kx-m2g+f)=0...

x=0... @ equilibrium position...

or 1/2kx-m2g+f=0...
there is where the half is...

And I get 0.409 m (correct), which is unlike the .204 m, i got from the Netwon's Laws...

I just want to thank "e)hn..." and you, "PhantomJay", for helping me out with this problem and sticking with me. Thanks.
 
  • #33
yus310 said:
... 2/3 is not the answer. But I get what you are trying to explain. I think I have to relate work & energy.

Emech=-Etherm (Energy Dissipated by friction)

Or
Wnet=Wfriction

Ef-Ei=-f*x
(Uf+Ufsp+Kf)-(U+Uisp+Ki)=-f*x
(Uf +Usp+0)-(0+0+0)
1/2kx^2+m2g(-x)+0=-f*x...

... x(1/2kx-m2g+f)=0...

x=0... @ equilibrium position...

or 1/2kx-m2g+f=0...
there is where the half is...

And I get 0.409 m (correct), which is unlike the .204 m, i got from the Netwon's Laws...

I just want to thank "e)hn..." and you, "PhantomJay", for helping me out with this problem and sticking with me. Thanks.
Yes, the 2/3 and 1/3 numbers I used were just for an example using a different problem. Your numbers are correct, nice work! This problem required a bit of thought for sure.
 
  • #34
PhanthomJay said:
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions.

That is entirely correct. To reiterate: the x you calculated using Newton's laws is the x at the springs new equilibrium position. The x calculated using energy methods is the maximum amplitude (extension) of the spring when the masses are released. To find this latter x using Newton's laws would require fiddling with differential equations I think.
 

Similar threads

Replies
17
Views
2K
Replies
29
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 37 ·
2
Replies
37
Views
2K
Replies
61
Views
3K
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K