Investigating Frictional Forces and Spring Extension

Click For Summary
SUMMARY

The discussion focuses on a physics problem involving a spring with a spring constant of 60 N/m, a 5 kg block on a horizontal surface with a kinetic friction coefficient of 0.15, and a 2 kg hanging block. The participants analyze the forces acting on both blocks using Newton's second law and the conservation of energy to find the frictional force and the maximum extension of the spring. The frictional force is calculated as f = u_k * F_n, where F_n is the normal force. The maximum extension of the spring can be determined using Hooke's law once the tension in the system is established.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Knowledge of Hooke's law for springs
  • Familiarity with kinetic friction and its calculation
  • Basic principles of conservation of energy
NEXT STEPS
  • Calculate the frictional force using the formula f = u_k * F_n
  • Determine the tension in the string using the equations of motion for both blocks
  • Apply Hooke's law to find the maximum extension of the spring
  • Explore the relationship between acceleration and the forces acting on the system at equilibrium
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators looking for practical examples of force analysis and energy conservation in systems involving springs and friction.

  • #31
yus310 said:
Yeah.. you're right... but that was just a typo in the previous post, even when I do (m2g-f)/k... I still get the half of the correct answer. When I do it applying energy and work, I get the correct answer... But still... why can't I use Newton's laws to get the correct answer. It makes no sense? Why is it half the answer?
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions. Looking again at the simple case of a 2kg mass hanging from a spring of spring constant k =60N/m, and using g=10m/s/s, then for the case where the mass is slowly released, using Newton, F_s = mg = 20N, and since x=F_s/k, x = 1/3m. But for the case where the mass is quickly released from rest, then using energy methods,
1/2kx^2 = mgx, solve x = 2mg/k = 40/60 =2/3m, which is the maximum extension of the spring, and twice the equilibrium extension.
 
Physics news on Phys.org
  • #32
PhanthomJay said:
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions. Looking again at the simple case of a 2kg mass hanging from a spring of spring constant k =60N/m, and using g=10m/s/s, then for the case where the mass is slowly released, using Newton, F_s = mg = 20N, and since x=F_s/k, x = 1/3m. But for the case where the mass is quickly released from rest, then using energy methods,
1/2kx^2 = mgx, solve x = 2mg/k = 40/60 =2/3m, which is the maximum extension of the spring, and twice the equilibrium extension.

... 2/3 is not the answer. But I get what you are trying to explain. I think I have to relate work & energy.

Emech=-Etherm (Energy Dissipated by friction)

Or
Wnet=Wfriction

Ef-Ei=-f*x
(Uf+Ufsp+Kf)-(U+Uisp+Ki)=-f*x
(Uf +Usp+0)-(0+0+0)
1/2kx^2+m2g(-x)+0=-f*x...

... x(1/2kx-m2g+f)=0...

x=0... @ equilibrium position...

or 1/2kx-m2g+f=0...
there is where the half is...

And I get 0.409 m (correct), which is unlike the .204 m, i got from the Netwon's Laws...

I just want to thank "e)hn..." and you, "PhantomJay", for helping me out with this problem and sticking with me. Thanks.
 
  • #33
yus310 said:
... 2/3 is not the answer. But I get what you are trying to explain. I think I have to relate work & energy.

Emech=-Etherm (Energy Dissipated by friction)

Or
Wnet=Wfriction

Ef-Ei=-f*x
(Uf+Ufsp+Kf)-(U+Uisp+Ki)=-f*x
(Uf +Usp+0)-(0+0+0)
1/2kx^2+m2g(-x)+0=-f*x...

... x(1/2kx-m2g+f)=0...

x=0... @ equilibrium position...

or 1/2kx-m2g+f=0...
there is where the half is...

And I get 0.409 m (correct), which is unlike the .204 m, i got from the Netwon's Laws...

I just want to thank "e)hn..." and you, "PhantomJay", for helping me out with this problem and sticking with me. Thanks.
Yes, the 2/3 and 1/3 numbers I used were just for an example using a different problem. Your numbers are correct, nice work! This problem required a bit of thought for sure.
 
  • #34
PhanthomJay said:
Using Newton's laws the way you have done, assumes that the hanging mass is slowly lowered to its new at rest equilibrium position, with no acceleration. And you calculate the unknowns based on this at rest position.The work energy method, however, assumes that the mass is released suddenly, in which case it will accelerate to a max speed then decelerate to 0 speed at the maximum extension, which is twice the 'equilibrium' extension. These are 2 separate assumptions.

That is entirely correct. To reiterate: the x you calculated using Newton's laws is the x at the springs new equilibrium position. The x calculated using energy methods is the maximum amplitude (extension) of the spring when the masses are released. To find this latter x using Newton's laws would require fiddling with differential equations I think.
 

Similar threads

Replies
17
Views
2K
Replies
29
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 37 ·
2
Replies
37
Views
2K
Replies
61
Views
3K
Replies
20
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K