Irrational Numbers.

446
1
Irrational Numbers are contained by infinite numerical values?
 
huh?!i didn't get what u mean:D
 
446
1
meaning if we would to write a irrational number out , we need a infinite number of digits?
 
607
0
meaning if we would to write a irrational number out , we need a infinite number of digits?
Do you care? If we write out 1/7 we would require an infinite number of digits.
 

Borek

Mentor
27,852
2,424
Depends on the base of the number system used. 1/7 is 0.17, 1/3 is 0.13, both require infinite number of digits if they are to be written base 10.

Edit: do you hate it when you make an idiot out of yourself just because you think in your first language when you should in English? I do. Irrational as it sounds, I was all the time thinking about rational numbers.
 
Last edited:
754
1
An irrational number cannot be written as a fraction. (A fraction is a "ratio," so it is considered to be "rational.") Therefore, it has an infinite number of digits after the decimal point. (If there was a finite number of digits after the decimal point, it could be written as a fraction and would therefore NOT be irrational).

On the other hand, just because there are an infinite number of digits following the decimal point, doesn't mean that the the value is irrational. (0.111111111... can be written as 1/9, so it is rational, whereas [tex]\pi, \: e, \: and \: \sqrt{2}[/tex] are all examples of irrational numbers).
 
31,932
3,895
Depends on the base of the number system used. 1/7 is 0.17, 1/3 is 0.13, both require infinite number of digits if they are to be written base 10.
1/7 can also be written as 0.06666666...7, and 1/3 can be written as 0.02222222...3, requiring an infinite number of digits in these bases.
 

Landau

Science Advisor
905
0
Every irrational number has an infinite non-repeating decimal expansion. Every rational number has either a finite decimal expansion, or an infinite repeating decimal expansion. I.e. for every rational number with an infinite decimal expansion, there is a repetion in the expansion, e.g. the above example 1/9=0.1111..., or 5/12=0.416666...
 

Hurkyl

Staff Emeritus
Science Advisor
Gold Member
14,829
14
meaning if we would to write a irrational number out , we need a infinite number of digits?
I can write [itex]\sqrt{2}[/itex] with two symbols: 2 and [itex]\sqrt{\ }[/itex].

The decimal expansion of [itex]\sqrt{2}[/itex] has infinitely many digits, though. And so does the decimal expansion of every irrational number, most rational numbers, and even every integer. (don't forget about the infinitely many zeros!)
 
1,352
349
don't forget about the infinitely many zeros!
That's what I was thinking. We can write "2" without all the zeroes (2.000000...) because by convention we leave them off. What if by convention we left off .4142135623731...? Then things would be different (we'd write sqrt(2) as "1"). The point is, representations of numbers tell you about conventions, not so much about the numbers themselves.
 
446
1
hey qntty ! thanks for your help. its greatly appreciated!
 

HallsofIvy

Science Advisor
41,626
821
Several years ago, a poster asked how to prove that a rational number could be written as a fraction! My first reaction was that that is the definition of "rational number" and could not be proven.

Then I realized that he had been taught "a rational number can be written as a terminating or repeating decimal" as the definition of rational number and now wanted to prove that a number satisfies that definition if and only if it can be written as a fraction, the opposite to the way it is normally done.
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top