Irreducible central elements generate maximal ideals?

  • Thread starter Thread starter Silversonic
  • Start date Start date
  • Tags Tags
    Elements
Silversonic
Messages
121
Reaction score
1
http://img17.imageshack.us/img17/3937/vjj6.png

I don't understand the very last bit, where it says a and b are central and so c is, hence a is not irreducible. Basically what replaces the "hence"? I can't seem to figure out the link between c being central meaning a isn't irreducible.

a being irreducible means it isn't a unit, hence D[x]a is proper but if it is not maximal it sits inside an ideal D[x]b where b is a central non-unit.

Hence a = cb for some c. Since a and b are non-units, to be irreducible c must be a unit. But then c being central contradicts it being a unit? Why? There are central units contained in H[x] for instance (the ring of quaternions), a real number is a central unit.
 
Last edited by a moderator:
Physics news on Phys.org
Hmm, left it for a few hours and came back to it. Noticed what I was doing wrong, not noticing that it was talking about irreducibility over F[x], instead of the whole ring D[x]. Therefore c cannot be a unit otherwise D[x]a does not sit properly in D[x]b, but since c is central and b is central, a = cb is a product of two non-unit elements of F[x]. Hence a is not irreducible over F[x].
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top