Sangoku
- 20
- 0
acceleration quantization ??
If x \Psi (x,t)=x \Psi(x,t)
and p \Psi (x,t)= -i\hbar \partial _{x} \Psi (x,t)
then should it be a \Psi (x,t) = \dot p \Psi (x,t)= \hbar ^{2} \partial _{xt} \Psi (x,t) using usual QM
So, the direct quantization of motion equation (constraint) should it read:
\hbar^{2} \partial _{xt} \Psi (x,t)+ \frac{dV}{dx}\Psi(x,t)=0
If x \Psi (x,t)=x \Psi(x,t)
and p \Psi (x,t)= -i\hbar \partial _{x} \Psi (x,t)
then should it be a \Psi (x,t) = \dot p \Psi (x,t)= \hbar ^{2} \partial _{xt} \Psi (x,t) using usual QM
So, the direct quantization of motion equation (constraint) should it read:
\hbar^{2} \partial _{xt} \Psi (x,t)+ \frac{dV}{dx}\Psi(x,t)=0