Is accumulation point = adherent point in a closed set?

AI Thread Summary
In a closed set, all accumulation points are adherent points, but not all adherent points are accumulation points. An adherent point can be a member of the set, while an accumulation point must have other members nearby. The discussion clarifies that isolated points are adherent but not accumulation points. Examples illustrate that a singleton set has no accumulation points but its only adherent point is itself. The reasoning confirms that in closed sets, accumulation points equal adherent points only when considering the definitions correctly.
kadas
Messages
12
Reaction score
0
A set S is closed iff it contains all its adherent points iff it contains all its accumulation point?

From what I know, in general accumulation point is a subset of adherent point, but if supposed I have a closed set, then the "if and only if" forces me to conclude that accumulation point = adherent points.

Supposed they are not equal, then since having all accumulation points inside the set already makes it a closed set, then a closed set doesn't necessarily contains all its adherent points which contradicts the definition.

Sorry if this is an easy question, but then if my reasoning is wrong, please help me to correct it. Thanks.
 
Mathematics news on Phys.org
A point, p, is an "adherent" point of a set, A, if and only if every neighborhood of p contains a member of A.

A point, p, is an "accumulation" point of a set, A, if and only if every neighborhood of p contains a member of A other than p itself.

The difference is that if p is in A, then it can be the "member of A" in every neighborhood in the definition of "adherent" point. There need not be any other member of A anywhere close to p.

That is, a point is an "adherent point" of a set, A, if it is either an accumulation point of A or a member of A. The two "if and only ifs": "if and only if it contains all of its adherent points"= "if and only if it contains all of its accumulation points" works because any adherent point that is not an accumulation point is already in the set. However, you certainly can have "adherent points" that are NOT accumulation points. That is, points in the set that are not accumulation points- they are called "isolated" points.

For any point, p, the singleton set, {p}, is closed. Its only "adherent" point is p itself. It has no accumulation points.

For another example, consider the subset of the real line A= (0, 1)\cup \{2\}- that is, the open interval from 0 to 1 and the point 2. The set of all accumulation points is the closed interval [0, 1]. The set of all adherent points is [0, 1]\cup \{2\}. 2 is an isolated point- it is in the set, so an adherent point, but not an accumulation point.
 
Last edited by a moderator:
ah, awesome. Now I understand how the "if and only if" parts works. How stupid of me not to think of an example of singleton. Thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top