Is an Antisymmetric 4-Tensor Zero if Any Off-Diagonal Component is Zero?

jeckster
Messages
2
Reaction score
0

Homework Statement


prove the zero component lemma for any anti-symmetric 4-tensor: If anyone of its 0ff-diagonal component is zero in all inertial coordinate system, then the entire tensor is zero.


Homework Equations





The Attempt at a Solution



in case of 4-vector, if a particular component is zero in all inertial frame then by Lorentz Transformation in different direction, it can be proved that the 4-vector is zero in all inertial frame.
Here, i m confusing in how to prove it in case of anti-symmetric 4-tensor

Any help would be highly appreciated. thank
 
Physics news on Phys.org
I have the same problem. No answers yet.
off diagonal components of the antisymmetric 4 tensors in special relativity involves 3 vectors and we can form 4 vectors from them. If any component of that 3 vector is zero under LT the 4-vector is zero then all the off-diagonal terms are zero. This is what I thought but how can I express this in Mathematical Language?
If I'm wrong can you give me a clue about it?
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top