B Is Born's Rule Commutative in Quantum State Measurements?

  • B
  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    born's rule
etotheipi
As far as I am aware, if a system is prepared in the state |r> and we measure some observable, the probability of the result of the measurement being the eigenvalue of some eigenvector |u> representing some other state is |<r|u>|2 or <r|u><u|r>.

On a slightly different note, I also know that a state can be represented in terms of basis vectors e.g. |r> = x|u> + y|d>. I have learned that an interpretation of this expression is that if the system is prepared in this state |r>, the probability of being in either the state |u> or |d> is the modulus square of their corresponding coefficients, where, for example, the coefficient of |u> may be expressed as <u|r>. This is consistent with the first paragraph.

However, if we now want to compute the probability that the system takes the state |r> given that it is prepared in the |u> state, according to Born's rule this is simply |<u|r>|2, or <u|r><r|u>, which is identical to the previous probability.

Would I then be right in saying that if some state |r> can be written as a linear combination of basis vectors as in

|r> = x|u> + y|d>

that the probability of measuring |r> given the system is prepared in the state |u> is identical to that of being prepared in the state |r> and measuring |u>, namely the modulus square of the coefficient which is in this case x? This appears to make physical sense in the example of spin just due to the symmetry of the two situations, but I just want to make sure my reasoning is correct. Thanks a bunch in advance!
 
Physics news on Phys.org
Yes.
 
  • Like
Likes vanhees71, Michael Price and etotheipi
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top