Is Brocard's Problem the Key to Solving Infinite Solutions?

  • Thread starter Thread starter secondprime
  • Start date Start date
  • Tags Tags
    Number theory
secondprime
Messages
47
Reaction score
0
Brocard's problem is a problem in mathematics that asks to find integer values of n for which
$$x^{2}-1=n!$$
http://en.wikipedia.org/wiki/Brocard's_problem.
According to Brocard's problem
$$x^{2}-1=n!=5!*(5+1)(5+2)...(5+s)$$
(x,n) is the solution tuple of the problem. If there are infinite ##x, n ##for which the above equation is true, then for each of ##x##, there is exactly one ##s##. It is a "one-to-one" relation. Therefore a "well defined","single valued" function f(x) exists which maps ##x## to ##s##(an element of set of all s), so ##s=f(x) ##

If ##5!*(5+1)(5+2)...(5+s)## is expanded, there are terms which grow ##\leq 5^{s}## and terms which grow ##\geq 5^{s}##.
Consider ##\mathcal{O}(5^{s})## as all terms which grow##\leq 5^{s}##

Since,## s=f(x)##, so,## 5^{s}=5^{f(x)} ## but,

##\frac{d}{dx}x^{2} <\frac{d}{dx} \mathcal{O}(5^{f(x)})##(after certain x). Therefore,

##\frac{d}{dx}x^{2} <\frac{d}{dx} \mathcal{O}(5^{f(x)})<\frac{d}{dx}5!*(5+1)(5+2)...(5+s) ##
After certain x, it is not possible to hold ##x^{2}-1=n!=5!*(5+1)(5+2)...(5+s)##.
if ##f(x) = {2 \over \log 5}\log x## then, ##5^{f(x)} = \mathrm e^{f(x) \log 5} = \mathrm e^{2 \log x} = x^2## so, ##x## has to be ##5^m##(because ##f(x)## has to be integer) and the equation becomes,##5^{2m}-1=k *\mathcal{O}(5^{r})=n!## which is not possible, since ##5\nmid n!+1 ## when ##n>5##.
 
Mathematics news on Phys.org
Thread closed.
Physics Forums is not the site for publishing personal theories. From the rules (https://www.physicsforums.com/threads/physics-forums-global-guidelines.414380/):
Physics Forums is not intended as an alternative to the usual professional venues for discussion and review of new ideas, e.g. personal contacts, conferences, and peer review before publication. If you have a new theory or idea, this is not the place to look for feedback on it or help in developing it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top