Is Energy Conserved When an Object Approaches Light Speed?

  • Thread starter Thread starter ChrisPhy
  • Start date Start date
  • Tags Tags
    Energy
ChrisPhy
Messages
16
Reaction score
0
Basic question I'm sure but...please help...

If there is an object of some mass accelerating toward some other massive object, I can see that total energy of system is same regardless of time as potential energy from gravity well is being lost as kinetic energy of object increases. It would appear that total energy in system is unchanged.

1) Am I correct in this understanding ?

2) If the object in question was say moving at the speed of light to start with, as the object gets closer to other massive object, isn't the gravity potential still being reduced over time ?

3) But object cannot gain any more kinetic energy (already at top speed) so I am thinking the total energy of this system is reducing as object gets closer to massive object ? But this cannot be the case...

I know I am missing a piece of the equation here, what is happening in this situation ?
 
Physics news on Phys.org
ChrisPhy said:
If there is an object of some mass accelerating toward some other massive object, I can see that total energy of system is same regardless of time as potential energy from gravity well is being lost as kinetic energy of object increases. It would appear that total energy in system is unchanged.

1) Am I correct in this understanding ?

In this particular case, yes, you can view things this way. In the general case, it is not always possible to define a "total energy" for the system that remains constant. For example, there is no good way to define a "total energy" for the universe as a whole that works this way.

ChrisPhy said:
2) If the object in question was say moving at the speed of light to start with, as the object gets closer to other massive object, isn't the gravity potential still being reduced over time ?

A terminology note: the word "object" is normally not used to refer to light, or anything that moves with the speed of light. Particularly since you used the phrase "object of some mass", and objects with mass cannot move at the speed of light. So I'll interpret your question as asking what happens when light "falls" in the gravitational field of a massive object.

ChrisPhy said:
3) But object cannot gain any more kinetic energy (already at top speed) so I am thinking the total energy of this system is reducing as object gets closer to massive object ?

No, it still stays constant, because light can still change its kinetic energy even though it can't change its speed, and it does so when "falling" in a gravitational field. This is called "gravitational redshift" or "gravitational blueshift" depending on whether the light is rising (redshift) or falling (blueshift), and it has been observed experimentally:

http://en.wikipedia.org/wiki/Pound–Rebka_experiment

So you can view the light as gaining or losing kinetic energy to balance the change in its potential energy, the same as an object with mass does.
 
PeterDonis said:
In this particular case, yes, you can view things this way. In the general case, it is not always possible to define a "total energy" for the system that remains constant. For example, there is no good way to define a "total energy" for the universe as a whole that works this way.



A terminology note: the word "object" is normally not used to refer to light, or anything that moves with the speed of light. Particularly since you used the phrase "object of some mass", and objects with mass cannot move at the speed of light. So I'll interpret your question as asking what happens when light "falls" in the gravitational field of a massive object.



No, it still stays constant, because light can still change its kinetic energy even though it can't change its speed, and it does so when "falling" in a gravitational field. This is called "gravitational redshift" or "gravitational blueshift" depending on whether the light is rising (redshift) or falling (blueshift), and it has been observed experimentally:

http://en.wikipedia.org/wiki/Pound–Rebka_experiment

So you can view the light as gaining or losing kinetic energy to balance the change in its potential energy, the same as an object with mass does.


Thank you for reply. I think I understand. I didn't know that about objects with mass can not go to full C speed. Thanks...
 
Well, it probably is not appropriate to call electromagnetic energy "kinetic", but yes, it does change along with gravitational potential.
Also, I'd think potential energy for the whole system can be defined the same way as in classical physics, a sum of the potential energies between each pair of objects, as long as there are a finite number of objects... and from that total energy is also easy to define. Not sure why Peter thinks otherwise.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top