MHB Is \( f(P) \) a \( p \)-Sylow Subgroup of \( H \)?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Show that it is a Sylow subgroup

Hey! :o

I am looking at the following exercise:

If $G$ is finite and $f:G\rightarrow H$ is a group epimorphism, show that if $P\in \text{Syl}_p(G)$ then $f(P)\in \text{Syl}_p(H)$. I have done the following:

Suppose that $|G|=p^km$, where $p\not\mid m$.
Since $P\in \text{Syl}_p(G)$ we have that $|P|=p^k$.
$f: G\rightarrow H$ is a group endomorphism, so it is a bijective map. Therefore, we have that $|G|=|f(G)|=|H|\Rightarrow |H|=p^km$.
So, every subgroup of $H$, say $S$, with $|S|=p^k$ is a $p$-Sylow subgroup of $H$, right? (Wondering)
Therefore, we have to show that $|f(P)|=p^k$, or not? (Wondering)
Does it stand that $|f(P)|=p^k$ because $f$ is bijective? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Re: Show that it is a Sylow subgroup

mathmari said:
Hey! :o

I am looking at the following exercise:

If $G$ is finite and $f:G\rightarrow H$ is a group epimorphism, show that if $P\in \text{Syl}_p(G)$ then $f(P)\in \text{Syl}_p(H)$. I have done the following:

Suppose that $|G|=p^km$, where $p\not\mid m$.
Since $P\in \text{Syl}_p(G)$ we have that $|P|=p^k$.
$f: G\rightarrow H$ is a group endomorphism

Epimorphism, which means surjective (one has to be careful, here. In the category of rings, epimorphisms are not necessarily surjective, and it is a non-trivial theorem of group theory that epimorhisms are surjective). An endomorphism is a homomorpism (not necessarily injective) $G \to G$.

...so it is a bijective map.

No, not even close to true.

Therefore, we have that $|G|=|f(G)|=|H|\Rightarrow |H|=p^km$.

No, epimorphisms are not, in general, bijective. Bijective homomorphisms are isomorphisms.
So, every subgroup of $H$, say $S$, with $|S|=p^k$ is a $p$-Sylow subgroup of $H$, right? (Wondering)
Therefore, we have to show that $|f(P)|=p^k$, or not? (Wondering)
Does it stand that $|f(P)|=p^k$ because $f$ is bijective? (Wondering)

No, and no.

If $g \in P$, for some $P \in \text{Syl}_p(G)$, then $g$ has order $p^k$ for some $k$. Thus $g^{p^k} = e_G$.

It follows since $f$ is a homomorphism that $f(g)^{p^k} = f(g^{p^k}) = f(e_G) = e_H$. Thus the order of $f(g)$ divides $p^k$, so it is $p^m$ for some $0 \leq m \leq k$.

Now $\langle f(g)\rangle$ is a $p$-subgroup of $H = f(G)$ since $f$ is surjective. Thus $f(g) \in f(P)$ and $f(P) \subseteq f(H)$.

Your goal is now to show that $f(P)$ is some Sylow $p$-subgroup of $H$.It is obvious it is a subgroup of a Sylow $p$-subgroup, so assume it is not a maximal $p$-subgroup, and derive a contradiction.
 
Re: Show that it is a Sylow subgroup

Deveno said:
Epimorphism, which means surjective (one has to be careful, here. In the category of rings, epimorphisms are not necessarily surjective, and it is a non-trivial theorem of group theory that epimorhisms are surjective). An endomorphism is a homomorpism (not necessarily injective) $G \to G$.



No, not even close to true.
No, epimorphisms are not, in general, bijective. Bijective homomorphisms are isomorphisms.

No, and no.

Ah ok... (Thinking)
Deveno said:
Now $\langle f(g)\rangle$ is a $p$-subgroup of $H = f(G)$ since $f$ is surjective.

We have that the order of $f(g)$ is a power of the prime $p$. Does this mean that it generates a cyclic subgroup? I got stuck right now... (Wondering)
What exactly do we get from the fact that $f$ is surjective? (Wondering)
Deveno said:
It is obvious it is a subgroup of a Sylow $p$-subgroup

Why do we have that? (Wondering)
 
I thought about it again... (Thinking)

Could we show it also as follows? Since $P\in \text{Syl}_p(G)$, we have that $P$ is a subgroup of $G$. Do we have from the correspondence theorem that $f(P)$ is a subgroup of $H$ ? (Wondering)

Suppose that this is true.

From the correspondence theorem we also have that $[G:P]=[H:f(P)]$, right? (Wondering)

Since $P\in \text{Syl}_p(G)$, we have that $[G:P]$ is coprime with $p$.

That means that $[H:f(P)]$ is also coprime with $p$. Do we conclude in that way that $f(P)$ is a $p$-Sylow subgroup of $H$ ? (Wondering)
 
Last edited by a moderator:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top