phyzguy
Science Advisor
- 5,281
- 2,341
Ryan_m_b said:It's probably for the best if we all try to steer the discussion back to the original question on the technical/economic feasibility of propulsion good enough to make interstellar crossings in a reasonable time frame. Discussions of why this should be done (if possible) are interesting but tangential.
I'll shut up about the motivations. One comment on the feasibility that hasn't come up in these discussions. This is the idea that you "leave your rocket at home". A large stationary laser or mass driver can fire a beam into space which the space vessel intercepts to provide propulsion. This way the fuel does not have to be carried by the vessel, and it greatly improves the trade-offs. For example, suppose I want to send a small probe to Alpha Centauri. I build a large stationary laser, and aim it at the probe, which has a large reflector to reflect the laser light, thus continuously gaining momentum. Since for light, E = pc, the probe will accelerate with an acceleration a = 2P/(mc), where P is the power of the laser, and m is the mass of the probe. A 100 kg probe and a 1 Gigawatt laser will give you a proper acceleartion of about 0.07 m/s^2, and get you to Alpha Centauri in about 40 years, at which point you are traveling at about 0.2c. Of course, this assumes that a 100 kg probe is big enough to actually be useful, that you don't want to decelerate when you get there, and that you can keep a 1 GWatt laser aimed at it over interstellar distances, but you get the idea.
Last edited: