devonho
- 8
- 0
Homework Statement
Let there be two discrete random variables:
<br /> X \in \lbrace 1,2,3,4,5,6,7,8,9,10 \rbrace \quad \text{where } P[X] \text{ is uniformly distributed over the sample space of } X \text{.}<br />
<br /> B = \left\lbrace<br /> \begin{array}{cl}<br /> 1 & \text{if} \quad X>4 \\<br /> 0 & \text{otherwise}\\<br /> \end{array}\right.<br />
<br /> P[B \mid X]=\left\lbrace<br /> \begin{array}{cl}<br /> 0 & \text{if} \quad x \in \lbrace 1,2,3,4 \rbrace\\<br /> 1 & \text{if} \quad x \in \lbrace 5,6,7,8,9,10 \rbrace\\<br /> \end{array}\right.<br />
<br /> P[X] = {1\over10} <br />
<br /> P[X,B] = P[B \mid X]P[X] = \left\lbrace<br /> \begin{array}{cl}<br /> 0 &\text{if} \quad x \in \lbrace 1,2,3,4 \rbrace\\<br /> {1\over 10} & \text{if} \quad x \in \lbrace 5,6,7,8,9,10 \rbrace\\<br /> \end{array}\right.<br />
The above should be agreeable. But what about:
<br /> P[X,B] = P[X \mid B]P<b><br /> </b>
Since B is dependent on X, is it meaningful or even correct to write an expression for P[X|B]?
Homework Equations
The Attempt at a Solution
I think no because the conditional probability will then be recursive.