Is n Prime if Zero Products and Unique Solutions Exist in Modulo n Arithmetic?

guyfromnola
Messages
1
Reaction score
0
I'm having some trouble addressing the following two questions in a text I am going through:

1. Show that n is a prime number iff whenever a,b ∈ Zn with ab=0, we must have that a=0 or b=0.

2. Show that n is a prime number iff for every a,b,c ∈ Zn satisfying a not =0, and ab=ac, we have that b=c.

There were some other similar questions that addressed showing two numbers are relatively prime by showing that gcd(a,n)=1, which was a little difficult to start, but I think I managed to get through them. However, I am stuck with these. Not sure how to begin to prove.

Any help is appreciated.
 
Physics news on Phys.org
guyfromnola said:
However, I am stuck with these. Not sure how to begin to prove.

Begin by expanding the definitions.

For 1:
ab = 0 (mod n) exactly when n | ab
a = 0 (mod n) exactly when n | a
b = 0 (mod n) exactly when n | b

So the question becomes:
Show that n is a prime number iff whenever n | ab, we must have that n | a or n | b.

That is, you need to show:
a. If n is prime and n | ab, either n | a or n | b.
b. If n is not prime, then there is some pair (a, b) with n ∤ a, n ∤ b, and n | ab.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top