Poirot1
- 243
- 0
Let p be prime and a be between 1 and p-1. Show the binomial coefficent (p-1)C(a) satifies
(p-1)C(a) =(-1)^a mod(p).
(p-1)C(a) =$\frac{(p-1)!}{a!(p-1-a)!}$ so we can apply wilson's theorem which says
(p-1)!=-1 (modp)
(p-1)C(a) =(-1)^a mod(p).
(p-1)C(a) =$\frac{(p-1)!}{a!(p-1-a)!}$ so we can apply wilson's theorem which says
(p-1)!=-1 (modp)