crotical
- 10
- 0
Is
P(A-B) = P(A) -P(B)
Here p is the probability function
Please help
P(A-B) = P(A) -P(B)
Here p is the probability function
Please help
crotical said:Is this proof valid
Given P(A) and P(B) are independent , prove P(A) and P(B') independent too.
P(A∩B) = P(A)P(B)
P(A∩B) = P(A)P(S-B')
=P(A)(1-P(B'))
=P(A)-P(A)P(B')
P(A∩B)=P(A)-P(A)P(B')
P(A∩(S-B'))=P(A)-P(A)P(B')
P(A-A∩(B'))=P(A)-P(A)P(B')
P(A)-P(A∩B')=P(A)-P(A)P(B')
P(A∩B')=P(A)P(B')