Is P(A-B) = P(A) -P(B)Here p is the probability function

AI Thread Summary
The discussion centers on the equation P(A-B) = P(A) - P(B) and its validity under different conditions. It is established that if B is a subset of A, the equation holds true; however, if B is not a subset, the equation may not apply, as demonstrated with examples involving multiples of numbers. The thread also explores the independence of events A and B, concluding that if P(A) and P(B) are independent, then P(A) and P(B') are also independent. The mathematical proofs provided support these claims, showing how probabilities interact under various scenarios. Overall, the validity of the initial equation and the independence of the events are key points of focus.
crotical
Messages
10
Reaction score
0
Is
P(A-B) = P(A) -P(B)

Here p is the probability function
Please help
 
Physics news on Phys.org


If B is a subset of A then, yes. However, if B is not a subset of A, in which case "A- BZ means "all members of A that are not also in B", this is not necessarily true. For example, suppose we choose a number from 1 to 100, each number being equally likely. Let A be the set of all multiples of 3, Be the set of all multiples of 6. There are 100/3= 33 multiples of 3 so P(A)= 0.33. There are 100/6= 16 multiples of 6 so P(B)= 16/100= 0.16. Of course, all multiples of 6 are multiples of 3 so A- B is just all multiples of 3 that are NOT multiples of 6 and there are 33- 16= 17 such numbers. P(A- B)= 17/100= 0.17= 0.33- 0.16= P(A)- P(B).

But suppose that B, instead of being "multiples of 6" is "even numbers (multiples of 2)". We still have P(A)= 0.33 but now P(B)= 0.5. Of course it is impossible that "P(A- B)= P(A)- P(B)" because P(A)- P(B)= 0.33- 0.5= -0.17 and a probability cannot be negative. In fact, "A- B" would mean removing from A all those numbers that are even and multiples of 2 which is the same as "multiples of 6". For this A and B, we would still have P(A-B)= 0.17 which is, as I said, NOT "P(A)- P(B)".
 


Is this proof valid
Given P(A) and P(B) are independent , prove P(A) and P(B') independent too.
P(A∩B) = P(A)P(B)
P(A∩B) = P(A)P(S-B')
=P(A)(1-P(B'))
=P(A)-P(A)P(B')
P(A∩B)=P(A)-P(A)P(B')
P(A∩(S-B'))=P(A)-P(A)P(B')
P(A-A∩(B'))=P(A)-P(A)P(B')
P(A)-P(A∩B')=P(A)-P(A)P(B')
P(A∩B')=P(A)P(B')
 


I took S here as universal set
 


crotical said:
Is this proof valid
Given P(A) and P(B) are independent , prove P(A) and P(B') independent too.
P(A∩B) = P(A)P(B)
P(A∩B) = P(A)P(S-B')
=P(A)(1-P(B'))
=P(A)-P(A)P(B')
P(A∩B)=P(A)-P(A)P(B')
P(A∩(S-B'))=P(A)-P(A)P(B')
P(A-A∩(B'))=P(A)-P(A)P(B')
P(A)-P(A∩B')=P(A)-P(A)P(B')
P(A∩B')=P(A)P(B')

You can shorten it a bit: A = A\cap[B \cup B'] = (A \cap B) \cup (A \cap B'), and these last two sets are mutually exclusive. Thus P(A) = P(A \cap B) + P(A \cap B'), \text{ hence } P(A \cap B') = P(A) - P(A) \cdot P(B) = P(A) \cdot P(B').

RGV
 
Back
Top