MHB Is Poisson's Kernel Useful for Computing Sums of Cosine Functions?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Kernel
Dustinsfl
Messages
2,217
Reaction score
5
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
 
Physics news on Phys.org
dwsmith said:
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
Yes it is. In the sum $\frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta}$, the "middle" term, with index $n=0$, gives $\frac1{2\pi}$. For the remaining terms, pair off the terms with indices $n$ and $-n$ and use the fact that $\frac12\bigl(e^{in\theta} + e^{-in\theta}\bigr) = \cos n\theta.$
 
If that is of some interest, if $|r|<1$ then...$\displaystyle \sum_{n=1}^{\infty} r^{n}\ \cos n \theta = \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{i n \theta} + \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{- i n \theta}=$

$\displaystyle = \frac{r}{2}\ (\frac{e^{i \theta}}{1-r e^{i \theta}} + \frac{e^{-i \theta}}{1-r e^{-i \theta}}) = \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}$ (1)

... so that...

$\displaystyle P(r, \theta)= \frac{1}{\pi}\ \{\frac{1}{2} + \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}\}$ (2)

Kind regards

$\chi$ $\sigma$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K