Is Poisson's Kernel Useful for Computing Sums of Cosine Functions?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Kernel
Click For Summary
SUMMARY

The discussion confirms the validity of the equation relating Poisson's Kernel to the sums of cosine functions. Specifically, it establishes that $$P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta}$$ is equivalent to $$\frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]$$ when the condition |r| < 1 is satisfied. The derivation involves pairing terms in the series and utilizing the identity for cosine in terms of exponential functions. The final expression for Poisson's Kernel is $$P(r, \theta)= \frac{1}{\pi}\left\{\frac{1}{2} + \frac{r(\cos \theta-r)}{1+r^{2}-r \cos \theta}\right\}.

PREREQUISITES
  • Understanding of complex analysis and Fourier series
  • Familiarity with the properties of exponential functions
  • Knowledge of convergence criteria for infinite series
  • Basic grasp of trigonometric identities
NEXT STEPS
  • Study the derivation of Fourier series and their applications in signal processing
  • Explore the properties of Poisson's Kernel in harmonic analysis
  • Investigate convergence conditions for series involving trigonometric functions
  • Learn about the applications of complex analysis in solving differential equations
USEFUL FOR

Mathematicians, physicists, and engineers interested in harmonic analysis, signal processing, and the application of Fourier series in various fields.

Dustinsfl
Messages
2,217
Reaction score
5
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
 
Physics news on Phys.org
dwsmith said:
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
Yes it is. In the sum $\frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta}$, the "middle" term, with index $n=0$, gives $\frac1{2\pi}$. For the remaining terms, pair off the terms with indices $n$ and $-n$ and use the fact that $\frac12\bigl(e^{in\theta} + e^{-in\theta}\bigr) = \cos n\theta.$
 
If that is of some interest, if $|r|<1$ then...$\displaystyle \sum_{n=1}^{\infty} r^{n}\ \cos n \theta = \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{i n \theta} + \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{- i n \theta}=$

$\displaystyle = \frac{r}{2}\ (\frac{e^{i \theta}}{1-r e^{i \theta}} + \frac{e^{-i \theta}}{1-r e^{-i \theta}}) = \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}$ (1)

... so that...

$\displaystyle P(r, \theta)= \frac{1}{\pi}\ \{\frac{1}{2} + \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}\}$ (2)

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K