MHB Is Poisson's Kernel Useful for Computing Sums of Cosine Functions?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Kernel
Click For Summary
Poisson's Kernel can indeed be expressed as the sum of cosine functions, specifically as $P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} = \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]$. The middle term of the sum contributes $\frac{1}{2\pi}$, while the remaining terms can be paired to utilize the cosine function identity. For $|r|<1$, the series converges, leading to a specific formula for the sum of cosines. The final expression for Poisson's Kernel incorporates both the constant and the cosine terms, demonstrating its utility in this context.
Dustinsfl
Messages
2,217
Reaction score
5
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
 
Physics news on Phys.org
dwsmith said:
$$
P(r,\theta) = \frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta} \overbrace{=}^{\mbox{?}} \frac{1}{\pi}\left[\frac{1}{2} + \sum_{n=1}^{\infty}r^n\cos n\theta\right]
$$

Is this true?
Yes it is. In the sum $\frac{1}{2\pi}\sum_{n = -\infty}^{\infty}r^{|n|}e^{in\theta}$, the "middle" term, with index $n=0$, gives $\frac1{2\pi}$. For the remaining terms, pair off the terms with indices $n$ and $-n$ and use the fact that $\frac12\bigl(e^{in\theta} + e^{-in\theta}\bigr) = \cos n\theta.$
 
If that is of some interest, if $|r|<1$ then...$\displaystyle \sum_{n=1}^{\infty} r^{n}\ \cos n \theta = \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{i n \theta} + \frac{1}{2}\ \sum_{n=1}^{\infty} r^{n}\ e^{- i n \theta}=$

$\displaystyle = \frac{r}{2}\ (\frac{e^{i \theta}}{1-r e^{i \theta}} + \frac{e^{-i \theta}}{1-r e^{-i \theta}}) = \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}$ (1)

... so that...

$\displaystyle P(r, \theta)= \frac{1}{\pi}\ \{\frac{1}{2} + \frac{r\ (\cos \theta-r)}{1+r^{2}-r \cos \theta}\}$ (2)

Kind regards

$\chi$ $\sigma$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K