Yes. It would be worth going through this yourself, but here's my calculation:
The pure spin state for an anti-correlated pair of spin-1/2 particles is: \frac{1}{\sqrt{2}} (|U_z\rangle |D_z\rangle - |D_z\rangle |U_z\rangle). The corresponding density matrix is
\sum_{a i b j} \rho_{a i b j} |a\rangle |i \rangle \langle b| \langle j|
where a, b refers to the first particle, and i, j refers to the second particle, and all the indices range over the possibilities U_z, D_z, and where the nonzero coefficients \rho_{a i b j} are given by:
- \rho_{U_z D_z U_z D_z} = \rho_{D_z U_z D_z U_z} =\frac{1}{2}
- \rho_{U_z D_z D_z U_z} = \rho_{D_z U_z U_z D_z} =-\frac{1}{2}
The reduced matrix for particle 2 is:
\sum_{i j} \rho_{i j} |i\rangle \langle j|
where \rho_{ij} \equiv \sum_{a} \rho_{a i a j}. The nonzero values for \rho_{ij} are:
- \rho_{U_z U_z} = \frac{1}{2}
- \rho_{D_z D_z} = \frac{1}{2}
So \rho = \frac{1}{2} |U_z\rangle \langle U_z| + \frac{1}{2} |D_z\rangle \langle D_z|
Using the usual two-component spinors: |U_z\rangle = \left( \begin{array} \\ 1 \\ 0 \end{array} \right) and |D_z\rangle = \left( \begin{array} \\ 0 \\ 1 \end{array} \right), this means:
\rho = \ \left( \begin{array} \\ \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right).
Now, go through the whole thing again using the basis
|U_x\rangle = \frac{1}{\sqrt{2}} (|U_z\rangle + |D_z\rangle)
|D_x\rangle = \frac{1}{\sqrt{2}} (|U_z\rangle - |D_z\rangle)
In this basis, the pure state is \frac{1}{\sqrt{2}}(|U_x\rangle |D_x\rangle - |D_x\rangle |U_x\rangle). (You can work this out.) This is exactly the same as for the z-basis, except the names of the states have changed.
The composite density matrix is analogous to the case for the z-basis. Then when you perform the trace, you end up with the reduced matrix:
\rho = \frac{1}{2} |U_x\rangle \langle U_x| + \frac{1}{2} |D_x\rangle \langle D_x|
Using the spinor representation: |U_x\rangle = \left(\begin{array} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right) and |D_x\rangle = \left(\begin{array} \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{array} \right), this means:
|U_x\rangle \langle U_x| = \left( \begin{array} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right) \left( \begin{array} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right) = \left( \begin{array} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right)|D_x\rangle \langle D_x| = \left( \begin{array} \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{array} \right) \left( \begin{array} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array} \right) = \left( \begin{array} \\ \frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{array} \right)
\rho = \frac{1}{2} |U_x\rangle \langle U_x| + \frac{1}{2} |D_x\rangle \langle D_x| = \left( \begin{array} \\ \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right)
You end up with the same reduced density matrix, regardless of which basis you work with.