rubi
Science Advisor
- 847
- 348
You can also decompose density matrices of more complicated mixtures in several ways. Here is an example:
Let ##\left|\psi_1\right> = \left|h\right>## and ##\left|\psi_2\right> = \frac{1}{\sqrt{2}}\left(\left|h\right>+\left|v\right>\right)##. Then ##\rho_1=\frac{1}{2}\left|\psi_1\right>\left<\psi_1\right| + \frac{1}{2}\left|\psi_2\right>\left<\psi_2\right| =\frac{1}{4}\left(\begin{array}{cc}3 & 1 \\ 1 & 3 \\\end{array}\right)##.
Now consider ##\left|\phi_1\right> = \frac{1+\sqrt{2}}{\sqrt{2 \left(2+\sqrt{2}\right)}}\left|h\right>+\frac{1}{\sqrt{2 \left(2+\sqrt{2}\right)}}\left|v\right>## and ##\left|\phi_2\right>=\frac{1-\sqrt{2}}{\sqrt{4-2 \sqrt{2}}}\left|h\right>+\frac{1}{\sqrt{4-2 \sqrt{2}}}\left|v\right>##. If we define ##\rho_2=\frac{1}{4} \left(2+\sqrt{2}\right)\left|\phi_1\right>\left<\phi_1\right| + \frac{1}{4} \left(2-\sqrt{2}\right)\left|\phi_2\right>\left<\phi_2\right|##, we also find ##\rho_2 = \frac{1}{4}\left(\begin{array}{cc}3 & 1 \\ 1 & 3 \\\end{array}\right)##. So we have ##\rho_1 = \rho_2##, but both arise from completely different mixtures. (Homework: Confirm the calculation!)
Let ##\left|\psi_1\right> = \left|h\right>## and ##\left|\psi_2\right> = \frac{1}{\sqrt{2}}\left(\left|h\right>+\left|v\right>\right)##. Then ##\rho_1=\frac{1}{2}\left|\psi_1\right>\left<\psi_1\right| + \frac{1}{2}\left|\psi_2\right>\left<\psi_2\right| =\frac{1}{4}\left(\begin{array}{cc}3 & 1 \\ 1 & 3 \\\end{array}\right)##.
Now consider ##\left|\phi_1\right> = \frac{1+\sqrt{2}}{\sqrt{2 \left(2+\sqrt{2}\right)}}\left|h\right>+\frac{1}{\sqrt{2 \left(2+\sqrt{2}\right)}}\left|v\right>## and ##\left|\phi_2\right>=\frac{1-\sqrt{2}}{\sqrt{4-2 \sqrt{2}}}\left|h\right>+\frac{1}{\sqrt{4-2 \sqrt{2}}}\left|v\right>##. If we define ##\rho_2=\frac{1}{4} \left(2+\sqrt{2}\right)\left|\phi_1\right>\left<\phi_1\right| + \frac{1}{4} \left(2-\sqrt{2}\right)\left|\phi_2\right>\left<\phi_2\right|##, we also find ##\rho_2 = \frac{1}{4}\left(\begin{array}{cc}3 & 1 \\ 1 & 3 \\\end{array}\right)##. So we have ##\rho_1 = \rho_2##, but both arise from completely different mixtures. (Homework: Confirm the calculation!)