noblegas
- 266
- 0
Homework Statement
Show that if the operator Q satifies
(\phi,Q\phi)=(Q\phi,\phi) for all \phi, then Q is self-adjoint , that is
(\varphi,QX)=(Q\varphi,X). Consider the functions
\phi_1=\varphi+X,\phi_2=\phi+i*X
Note: X is NOT a matrix. Could not find the latex code for the curvy X so i just typed X
Homework Equations
The Attempt at a Solution
(\phi,Q\phi)=(Q\phi,\phi) =(\phi_1,Q\phi_1)=(Q\phi_1,\phi_1)=(\varphi+X),Q(\varphi+X), (Q\phi,\phi)=(\phi_2,Q\phi_2)=(Q\phi_1,\phi)=(\varphi+X)i,Q(\varphi+X)i ? Am I off in the right direction?