brief answer to your title: 'yes'
some details:
here are some good discussions on continuous versus discrete spacetime. Relativists often don't much like the idea of continuous spacetime [because that's not the perspective Einstein developed] but when you stick in 'h' for quantum mechanics formulations of the worold just about everything gets quantized...
From Wikipedia:
Planck discovered that physical action could not take on any indiscriminate value. Instead, the action must be some multiple of a very small quantity (later to be named the "quantum of action" and now called Planck's constant). This inherent granularity is counterintuitive in the everyday world, where it is possible to "make things a little bit hotter" or "move things a little bit faster". This is because the quanta of action are very, very small in comparison to everyday human experience. Thus, on the macro scale quantum mechanics and classical physics converge. Nevertheless, it is impossible, as Planck found out, to explain some phenomena without accepting that action is quantized.
http://pirsa.org/09090005/
Spacetime can be simultaneously discrete and continuous, in the same way that information can.
http://arxiv.org/abs/1010.4354
“The equivalence of continuous and discrete information, which is of key importance in information theory, is established by Shannon sampling theory: of any band limited signal it suffices to record discrete samples to be able to perfectly reconstruct it everywhere, if the samples are taken at a rate of at least twice the band limit. It is known that physical fields on generic curved spaces obey a sampling theorem if they possesses an ultraviolet cutoff.”
and
http://arxiv.org/abs/0708.0062
On Information Theory, Spectral Geometry and Quantum Gravity
Achim Kempf, Robert Martin
4 pages
(Submitted on 1 Aug 2007)
We show that there exists a deep link between the two disciplines of information theory and spectral geometry.
In this thread
https://www.physicsforums.com/showthread.php?t=391989
"argument for the discreteness of spacetime",
Ben Crowell posted this question...
The following is a paraphrase of an argument for the discreteness of spacetime, made by Smolin in his popular-level book Three Roads to Quantum Gravity. The Bekenstein bound says there's a limit on how much information can be stored within a given region of space. If spacetime could be described by continuous classical fields with infinitely many degrees of freedom, then there would be no such limit. Therefore spacetime is discrete.
Lee Smolin says this in THREE ROADS TO QUANTUM GRAVITY
"On the Planck scale space seems to be composed of fundamental discrete units. String bits are one view of this, the Bekenstein bound from black hole thermodynamics is another. (LQG sees these units as spin networks.) It’s possible these are three different approaches to the quantum world..maybe there is a way of unifying them within a single theory.
The Holographic principle was inspired by the Bekenstein bound. Einstein’s equations of relativity can be derived by using the Bekenstein bound and laws of thermodynamics..."
If you search these forums you'll find many interesting discussions on your topic.