I Is Special Relativity Creating a Paradox in Our Understanding of Time and Space?

SpookyAction_
Messages
1
Reaction score
0
TL;DR Summary
If time slows down near the speed of light and space shrinks, doesn't that create a paradox?
So I was reading a book on special relativity and it was explaining how, if we were to go very near the speed of light, time (relative to us traveling) would slow and space itself would condense. It used the example that if we were to try and travel to a galaxy 1 million light years away, Yet we flew at 99% the speed of light it would only take us 50 years to arrive. (These are not exact numbers found using the gamma equation I'm simply paraphrasing for the concept)

However this confused me. Is this not essentially saying that "relative to us" we are traveling faster when moving SLOWER than the speed of light? Is special relativity asserting that light only takes 1 million years to reach us relative to us sitting "stationary" (not really but comparativley) on earth.

And if we were in "light's shoes" as it were, barrelling towards the Earth from 1 million light years away it would really only be 50 years.

Moreover if this is correct and truly all time is relative what does that mean for our current cosmological timeline for the big bang and other historic cosmological events? How can we be sure of our measurements.

I'm sure there's something I'm missing here but I don't know what. Thank you!
 
Last edited by a moderator:
Physics news on Phys.org
SpookyAction_ said:
I was reading a book on special relativity

Which book?

SpookyAction_ said:
It used the example that if we were to try and travel to a galaxy 1 million light years away, Yet we flew at 99% the speed of light it would only take us 50 years to arrive.

It would take us 50 years by our own clock. But we in the spaceship would also see the distance to the galaxy length contracted to less than 50 light-years.

In fact, to really describe things correctly from our frame in the spaceship, we should describe the galaxy as moving (and the Earth as well), not us. So the correct description would be that the Earth starts moving away from us at 99% of the speed of light, and at that same time in our frame, the galaxy is a little less than 50 light-years away. The galaxy moves towards us at 99% of the speed of light for 50 years.

Note that this description says nothing about how much time elapses on Earth's clocks, or the galaxy's clocks. To properly describe that you would need to take into account relativity of simultaneity--where the galaxy is "at the same time" as the spaceship and Earth are co-located depends on the frame. Failure to properly take into account relativity of simultaneity is almost always at the root of apparent "paradoxes" in SR.

SpookyAction_ said:
Is this not essentially saying that "relative to us" we are traveling faster when moving SLOWER than the speed of light?

No. You're always at rest relative to yourself.

SpookyAction_ said:
if this is correct and truly all time is relative what does that mean for our current cosmological timeline for the big bang and other historic cosmological events?

The times given by cosmologists are for particular observers called "comoving" observers, for whom the universe always looks homogeneous and isotropic. Observers who are moving relative to comoving observers will not observe the same times. But the times for "comoving" observers are the easiest ones to match up with the models that cosmologists use.

SpookyAction_ said:
How can we be sure of our measurements.

Measurements are invariants and don't depend on what frame of reference you adopt. So effects like time dilation and length contraction don't make us unsure of our measurements.
 
SpookyAction_ said:
Summary: If time slows down near the speed of light and space shrinks, doesn't that create a paradox?

So I was reading a book on special relativity and it was explaining how, if we were to go very near the speed of light, time (relative to us traveling) would slow and space itself would condense.
The part about time slowing is more correctly referred to as time dilation. The bit about space condensing is more correctly referred to as length contraction.

In the example you gave of traveling to a distant location we can say that according to the rest frame of the travelers the length is contracted. But according to the rest frame of Earth, time is dilated.

So you see, you don't have both length contraction and time dilation in either rest frame.

Note that a material object will always lose a race with a light beam. That is what we mean when we say material objects cannot travel at (or above) the speed of a light beam in a vacuum.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top