MHB Is the Absolute Convergence Theorem Sufficient to Prove This?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Convergence
alexmahone
Messages
303
Reaction score
0
Prove: if $\sum a_n$ is absolutely convergent and $\{b_n\}$ is bounded, then $\sum a_nb_n$ is convergent.

My working:

$|b_n|\le B$ for some $B\ge 0$.

$|a_n||b_n|<B|a_n|$

Since $\sum|a_n|$ converges, $\sum|a_n||b_n|=\sum|a_nb_n|$ converges.

So, $\sum a_nb_n$ converges. (Absolute convergence theorem)

Is that okay?
 
Last edited:
Physics news on Phys.org
Yes it's OK. Just one thing we have in general $|a_n|\cdot |b_n|\leq |a_n|\cdot B$ in general (this inequality is not strict in general).
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K