Is the Axiom of Choice Necessary for Well-Ordering the Reals?

  • Thread starter Thread starter dmuthuk
  • Start date Start date
dmuthuk
Messages
41
Reaction score
1
We all know that the axiom of choice is equivalent to the existence of a well-ordering for any set. And, this of course implies that \mathbb{R} can be well-ordered, in particular. However, how do we know that the axiom of choice is actually needed in the case of the reals? That is, if we remove the axiom of choice, do the reals become a set that cannot be well-ordered? Furthermore, is the axiom of choice needed for every uncountable set?
 
Physics news on Phys.org
You're essentially asking if ZF + there exists a well-ordering of the reals is weaker than ZFC, right?
 
CRGreathouse said:
You're essentially asking if ZF + there exists a well-ordering of the reals is weaker than ZFC, right?

Yes, I believe I am. So, I guess what I wanted to know is if there exists a proof that the reals can be well-ordered without AC.
 
dmuthuk said:
Yes, I believe I am. So, I guess what I wanted to know is if there exists a proof that the reals can be well-ordered without AC.

No there isn't. When Cohen proved the independence of AC he used a model in which there was no well-ordering of the reals.
 
Does that actually prove what dmuthuk asked? I know that ZF + "there is no well-ordering of the reals" is consistent*, but what about ZF + ¬C + "there is a well-ordering of the reals"?


* By "consistent", I mean "equiconsistent with ZFC".
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
7
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
40
Views
4K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
7
Views
1K
Back
Top