Is the Calculation of the Vector Line Integral Over a Square Correct?

Click For Summary

Homework Help Overview

The discussion revolves around the calculation of a vector line integral over the boundary of a unit square, specifically using the vector field F = (x^2 - y^2)i + (x^2 + y^2)j. Participants are examining the correctness of different approaches to this integral, including the use of Green's theorem and direct parameterization of the curve.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Some participants explore the parameterization of the unit square's perimeter and the integration of the vector field along this path. Others question the orientation required by Green's theorem and whether the clockwise orientation used by the author is appropriate.

Discussion Status

There is an ongoing debate regarding the correctness of the answers provided by the original poster and other participants. Some assert that the original poster's approach is flawed due to the orientation of the integral, while others suggest that the calculations may need to be revisited for accuracy. Multiple interpretations of the integral's limits and the application of Green's theorem are being explored.

Contextual Notes

Participants note that Green's theorem typically assumes an anticlockwise orientation, which may affect the sign of the result. There are also discussions about the correct limits of integration and the implications of using different methods to evaluate the integral.

WMDhamnekar
MHB
Messages
381
Reaction score
30
Homework Statement
##\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy, ##where c is the boundary of the unit square,oriented clockwise.
Relevant Equations
No relevant equation
Author's answer:
Recognizing that this integral is simply a vector line integral of the vector field ##F=(x^2−y^2)i+(x^2+y^2)j## over the closed, simple curve c given by the edge of the unit square, one sees that ##(x^2−y^2)dx+(x^2+y^2)dy=F\cdot ds##
is just a differentiable 1-form. The process here would be, then, the parameterize the unit square perimeter by time, and integrate under the parameterization: We get ##\begin{equation}c(t)=\begin{cases}(0,t), 0≤t≤1\\
(t−1,1) ,1≤t≤2 \\
(1,3−t), 2≤t≤3\\
(4−t,0) ,3≤t≤4. \end{cases}
\end{equation}##

as our clockwise parameterization, beginning and ending at the origin. To understand the switch to the parameterization, we highlight the first “piece”: Along the left-side edge of the unit square only, the parameterization is the path c1, going from (0, 0) to (0, 1) and parameterized by t in the y-direction only. We get

##\begin{align*}\displaystyle\int_{c_1} F\cdot ds &= \displaystyle\int_{c_1} (x^2-y^2)dx + (x^2+y^2)dy \\
&= \displaystyle\int_0^1 F_1 (x(t),y(t)) x'(t) dt + F_2 (x(t), y(t))y'(t) dt \\
&=\displaystyle\int_0^1 ((0)^2 -(t)^2 )(0dt) + ((0)^2 +(t)^2 )(1dt) \\
&=\displaystyle\int_0^1 t^2 dt = \frac{t^3}{3}\big{|}_0^1 =\frac13 \end{align*}##

Hence on the four pieces (so once around the square), we get

## \begin{align*}\displaystyle\oint_c F \cdot ds &= \displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy \\
&=\displaystyle\int_0^1 t^2 dt \displaystyle\int_1^2 ((t-1)^2 -1^2) dt + \displaystyle\int_2^3 (1^2 - (3-t)^2 )dt + \displaystyle\int_3^4 (4-t)^2 dt\\
&= \displaystyle\int_0^1 t^2 dt +\displaystyle\int_1^2 (t^2 - 2t )dt + \displaystyle\int_2^3 (10 -6t +t^2 )dt +\displaystyle\int_3^4 (16 - 8t +t^2)dt\\
&= \frac13 + \left ( \frac{t^3}{3}- t^2\right ) \big{|}_1^2 + \left( 10t - 3t^2 +\frac{t^3}{3}\right)\big{|}_2^3 +\left( 16t - 4t^2 +\frac{t^3}{3}\right) \big{|}_3^4 \\
&= \frac13 +\left( \frac83 -4 -\frac13 +1\right) +\left( 30 -27 +9 -20 +12 - \frac83 \right) + \left( 64-64 +\frac{64}{3}-48 + 36 -9\right) \\
&= \frac13 -\frac23 + \frac43 +\frac13 = \frac43 \end{align*} ##

My answer:

Here, c is the boundary of the unit square oriented clockwise of the regionR={(x,y):0≤x≤1,0≤y≤1}
By Green's theorem ##P(x,y)=(x^2−y^2),Q(x,y)=(x^2+y^2) ##we have
##\begin{align*} \displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2 )dy &= \displaystyle\iint\limits_R \left( \frac{\partial{Q}}{\partial{x}} - \frac{\partial{P}}{\partial{y}}\right)d A\\
&= \displaystyle\iint\limits_R (2x+2y)dA =2 \end{align*}##

Whose answer is correct? My answer or author's answer?
 
Last edited:
Physics news on Phys.org
WMDhamnekar said:
Whose answer is correct? My answer or author's answer?
Neither. Green's Theorem involves an anticlockwise orientation, so the answer should be ##-2##.
 
PeroK said:
Neither. Green's Theorem involves an anticlockwise orientation, so the answer should be ##-2##.
Which is also easily obtained from Stokes’ theorem (of which Green’s theorem is a special case):
$$
d((x^2-y^2) dx + (x^2 + y^2) dy) = -2y\, dy\wedge dx + 2x \, dx \wedge dy = -2(x + y) dy\wedge dx
$$
Anti-clockwise rotation means ##dy\wedge dx## is correct surface orientation to get the correct sign.
 
PeroK said:
Neither. Green's Theorem involves an anticlockwise orientation, so the answer should be ##-2##.
Would you tell me where the author is wrong?

Would you tell me the correct upper and lower integral limits of the area for my answer?
 
WMDhamnekar said:
Would you tell me where the author is wrong?
It's a mess. I'll let you look for the error.
WMDhamnekar said:
Would you tell me the correct upper and lower integral limits of the area for my answer?
You have:
$$\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy$$$$= \int_0^1 (0 + y^2) dy + \int_0^1(x^2 - 1)dx - \int_0^1(1 + y^2)dy - \int_0^1 (x^2 - 0)dx$$Note that the ##x^2## and ##y^2## terms cancel out, leaving:
$$= \int_0^1(- 1)dx - \int_0^1(1)dy = -2$$
 
  • Informative
Likes   Reactions: WMDhamnekar
Note that, more generally,for the given path:
$$\displaystyle\oint_c (f(x) - g(y))dx + (f(x)+g(y))dy$$$$= f(0) + g(0) - f(1) - g(1)$$
 
PeroK said:
It's a mess. I'll let you look for the error.

You have:
$$\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy$$$$= \int_0^1 (0 + y^2) dy + \int_0^1(x^2 - 1)dx - \int_0^1(1 + y^2)dy - \int_0^1 (x^2 - 0)dx$$Note that the ##x^2## and ##y^2## terms cancel out, leaving:
$$= \int_0^1(- 1)dx - \int_0^1(1)dy = -2$$
I hope the following presentation of answer would be correct

##\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy=\displaystyle\int_0^1 \int_1^0 (2x +2y)dA =-2 ##
 
PeroK said:
It's a mess. I'll let you look for the error.

You have:
$$\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy$$$$= \int_0^1 (0 + y^2) dy + \int_0^1(x^2 - 1)dx - \int_0^1(1 + y^2)dy - \int_0^1 (x^2 - 0)dx$$Note that the ##x^2## and ##y^2## terms cancel out, leaving:
$$= \int_0^1(- 1)dx - \int_0^1(1)dy = -2$$
How shall I know that you have used here green theorem? I used in my answer Green's theorem.
 
WMDhamnekar said:
How shall I know that you have used here green theorem? I used in my answer Green's theorem.
I didn't use Green's theorem. I just did the four line integrals separately. That seemed the simplest approach.
 
  • Informative
Likes   Reactions: WMDhamnekar
  • #10
Orodruin said:
Which is also easily obtained from Stokes’ theorem (of which Green’s theorem is a special case):
$$
d((x^2-y^2) dx + (x^2 + y^2) dy) = -2y\, dy\wedge dx + 2x \, dx \wedge dy = -2(x + y) dy\wedge dx
$$
Anti-clockwise rotation means ##dy\wedge dx## is correct surface orientation to get the correct sign.
What is the meaning of ##dy \wedge dx?##
 
  • #11
WMDhamnekar said:
I hope the following presentation of answer would be correct

##\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy=\displaystyle\int_0^1 \int_1^0 (2x +2y)dA =-2 ##
Yes, but it would seem more logical to write:
$$\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy=-\displaystyle\int_0^1 \int_0^1 (2x +2y)dA =-2 $$
 
  • Like
Likes   Reactions: WMDhamnekar
  • #12
WMDhamnekar said:
What is the meaning of ##dy \wedge dx?##
That is a 2-form.

Generally, Stokes’ theorem (not to be confused with the curl theorem — which is often also called Stokes’ theorem and is a special case, just as Green’s theorem and the divergence theorem) states that if ##\omega## is a ##p##-form and ##\Omega## a ##p+1##-dimensional region then
$$
\oint_{\partial\Omega} \omega = \int_\Omega d\omega.
$$
 
  • Informative
Likes   Reactions: WMDhamnekar
  • #13
WMDhamnekar said:
Homework Statement:: ##\displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy, ##where c is the boundary of the unit square,oriented clockwise.
Relevant Equations:: No relevant equation

Author's answer:
Recognizing that this integral is simply a vector line integral of the vector field ##F=(x^2−y^2)i+(x^2+y^2)j## over the closed, simple curve c given by the edge of the unit square, one sees that ##(x^2−y^2)dx+(x^2+y^2)dy=F\cdot ds##
is just a differentiable 1-form. The process here would be, then, the parameterize the unit square perimeter by time, and integrate under the parameterization: We get ##\begin{equation}c(t)=\begin{cases}(0,t), 0≤t≤1\\
(t−1,1) ,1≤t≤2 \\
(1,3−t), 2≤t≤3\\
(4−t,0) ,3≤t≤4. \end{cases}
\end{equation}##

as our clockwise parameterization, beginning and ending at the origin. To understand the switch to the parameterization, we highlight the first “piece”: Along the left-side edge of the unit square only, the parameterization is the path c1, going from (0, 0) to (0, 1) and parameterized by t in the y-direction only. We get

##\begin{align*}\displaystyle\int_{c_1} F\cdot ds &= \displaystyle\int_{c_1} (x^2-y^2)dx + (x^2+y^2)dy \\
&= \displaystyle\int_0^1 F_1 (x(t),y(t)) x'(t) dt + F_2 (x(t), y(t))y'(t) dt \\
&=\displaystyle\int_0^1 ((0)^2 -(t)^2 )(0dt) + ((0)^2 +(t)^2 )(1dt) \\
&=\displaystyle\int_0^1 t^2 dt = \frac{t^3}{3}\big{|}_0^1 =\frac13 \end{align*}##

Hence on the four pieces (so once around the square), we get

## \begin{align*}\displaystyle\oint_c F \cdot ds &= \displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2)dy \\
&=\displaystyle\int_0^1 t^2 dt \displaystyle\int_1^2 ((t-1)^2 -1^2) dt + \displaystyle\int_2^3 (1^2 - (3-t)^2 )dt + \displaystyle\int_3^4 (4-t)^2 dt\\
&= \displaystyle\int_0^1 t^2 dt +\displaystyle\int_1^2 (t^2 - 2t )dt + \displaystyle\int_2^3 (10 -6t +t^2 )dt +\displaystyle\int_3^4 (16 - 8t +t^2)dt\\
&= \frac13 + \left ( \frac{t^3}{3}- t^2\right ) \big{|}_1^2 + \left( 10t - 3t^2 +\frac{t^3}{3}\right)\big{|}_2^3 +\left( 16t - 4t^2 +\frac{t^3}{3}\right) \big{|}_3^4 \\
&= \frac13 +\left( \frac83 -4 -\frac13 +1\right) +\left( 30 -27 +9 -20 +12 - \frac83 \right) + \left( 64-64 +\frac{64}{3}-48 + 36 -9\right) \\
&= \frac13 -\frac23 + \frac43 +\frac13 = \frac43 \end{align*} ##

My answer:

Here, c is the boundary of the unit square oriented clockwise of the regionR={(x,y):0≤x≤1,0≤y≤1}
By Green's theorem ##P(x,y)=(x^2−y^2),Q(x,y)=(x^2+y^2) ##we have
##\begin{align*} \displaystyle\oint_c (x^2-y^2)dx + (x^2+y^2 )dy &= \displaystyle\iint\limits_R \left( \frac{\partial{Q}}{\partial{x}} - \frac{\partial{P}}{\partial{y}}\right)d A\\
&= \displaystyle\iint\limits_R (2x+2y)dA =2 \end{align*}##

Whose answer is correct? My answer or author's answer?
If I may, you're missing a + sign in the second term of the second line of your math .
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K