Now I am wondering what you mean by a "proper set"! I don't believe I have ever seen such a term (except perhaps in distinguishing "sets" from "classes" which surely doesn't apply here!). A "topological space" is simply a set with a given topology (a certain collection of its subsets). Also by a "2-space topological point set", do you mean a subset of R2 with the usual metric?
"the circle so defined will contain an area 'dense' in points for any value of 'r' greater than zero"
Once again, saying an area is "dense in points" makes no sense. One set may or may not be "dense" in another set. No set can be called dense without saying dense in what set.
"The question remains (for me) whether any such arbitrary point, not identified in in terms of a number (real or complex), could be considered a subset of a point set so defined."
I don't understand this at all. If you have some given point set, each point in it is a MEMBER, not a subset. Yes, if you have a point set A and p is a point in it, then the set {p} is a subset of A.
"My understanding, is that if such a point set is not a proper set, any arbitrary point in the topological space is not a subset of any set. "
I still don't understand what you mean by a "proper set" but in general a point is NOT a set! A point is IN a set of points, not a subset of it.