MHB Is the given function a solution of the differential equation?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ Verify the following given functions is a solution of the differential equation}\\ \\$
$y''''+4y'''+3y=t\\$
$y_1(t)=t/3$
\begin{align*}
(t/3)''''+4(t/3)'''+(t/3)&=t\\
0+0+t&=t
\end{align*}
$y_2(t)=e^{-t}+t/3$
\begin{align*}
(e^{-t}+t/3)''''+4(e^{-t}+t/3)'''+3(e^{-t}+t/3)&=t\\
e^{-t}-4e^{-t}+3e^{-t}+3e^{-t}+t&=t\\
t&=t
\end{align*}

so is it Raj now?

$$\tiny{\textsf{Elementary Differential Equations and Boundary Value Problems}}$$
 
Physics news on Phys.org
A bunch of typos but it's correct. First one it's $3 \cdot (t/3)$, and second one you copied $3e^{-t}$ twice.
 
$\textsf{ Verify the following given functions is a solution of the differential equation}\\ \\$
$y''''+4y'''+3y=t\\$
$y_1(t)=t/3$
\begin{align*}
(t/3)''''+4(t/3)'''+3(t/3)&=t\\
0+0+t&=t
\end{align*}
$y_2(t)=e^{-t}+t/3$
\begin{align*}
(e^{-t}+t/3)''''+4(e^{-t}+t/3)'''+3(e^{-t}+t/3)&=t\\
e^{-t}-4e^{-t}+3e^{-t}+t&=t\\
t&=t
\end{align*}
 
Rido12 said:
A bunch of typos but it's correct. First one it's $3 \cdot (t/3)$, and second one you copied $3e^{-t}$ twice.
mahalo
 
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
1
Views
3K
Replies
1
Views
3K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
3K
Replies
5
Views
3K
Replies
17
Views
3K
Back
Top