Is the Integral Zero for Closed Paths in Complex Analysis?

Gwinterz
Messages
27
Reaction score
0
Hey, I have been stuck on this question for a while:

WClcaAN.jpg

I have tried to follow the hint, but I am not sure where to go next to get the result.



Have I started correctly? I am not sure how to show that the integral is zero.

If I can show it is less than zero, I also don't see how that shows it is always zero.

Thanks in advance for any help.
 

Attachments

  • WClcaAN.jpg
    WClcaAN.jpg
    17.6 KB · Views: 647
Physics news on Phys.org
The condition in the premise is on ##\left|f(z)\right|##, not ##f(z)##. If you have in fact shown that ##\left|f(z)\right| \leq 0##, then it must be equal to 0 since it can't be negative.
 
Gwinterz said:
Hey, I have been stuck on this question for a while:

View attachment 232707
I have tried to follow the hint, but I am not sure where to go next to get the result.



Have I started correctly? I am not sure how to show that the integral is zero.

If I can show it is less than zero, I also don't see how that shows it is always zero.

Thanks in advance for any help.

Something cannot be less than zero and equal to zero at the same time. However, since you have non-strict inequalities "##\leq##" there is a chance you can show the thing is ##\leq 0##. Then (being a norm in the complex plane) it must also be ##\geq 0##, hence must ##= 0.##
 
Thanks guys that makes sense.

Is the integral equal to zero because its a closed path?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top