Is the ISW Hamiltonian Diagonal in the Energy Basis?

v_pino
Messages
156
Reaction score
0

Homework Statement


Find the matrix elements of the Hamiltonian in the energy basis for the ISW. Is it
diagonal? Do you expect it to be diagonal?

Homework Equations



H=\frac{p^2}{2m}+V

\frac{d}{dt}\langle Q \rangle = \frac{i}{\hbar} \langle[\hat H, \hat Q] \rangle + \langle \frac{\partial \hat Q}{\partial t} \rangle


The Attempt at a Solution



How should I convert H into matrix?
 
Physics news on Phys.org
I assume by ISW you mean "infinite square well". Anyway, you're not asked to convert H into a matrix. You are asked to find its matrix elements. Some things: 1) Matrix elements are indexed scalars. 2) "Matrix elements" carries the connotation of "eigenvalues". 3) What happens when the Hamiltonian operator "hits" an energy-basis vector/ket? 4) What is the dual of this equation? Does that get the gears working?
 
Thanks bjnartown, I searched and found this. I already had the correct math down, but your explanation is wonderful and I really learned a lot from it. I seriously created an account to tell you that, lol.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top