zli034
- 106
- 0
If there are X and Y two random variables. The pdf of Y is f(y), and conditional pdf of X is f(x|y). I want to find the marginal CDF of X, the F(x). Is this correct?
F(x)=\int^{F(x|y)}_{-\infty}f(y)dy
\dfrac{d}{dx}\int^{F(x|y)}_{-\infty}f(y)dy=\int^{\infty}_{-\infty}f(x|y)f(y)dy=f(x)?
F(x)=\int^{F(x|y)}_{-\infty}f(y)dy
\dfrac{d}{dx}\int^{F(x|y)}_{-\infty}f(y)dy=\int^{\infty}_{-\infty}f(x|y)f(y)dy=f(x)?
Last edited: