MHB Is the Remainder of Polynomial $f(x)$ the Same for Two Different Divisors?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that the remainder of the polynomial $f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$ is the same upon division by $x(x+1)$ as upon division by $x(x+1)^2$.
 
Mathematics news on Phys.org
$f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$1st we provide the premise

this shall have same remainder when divided by $x(x+1)$ and $x(x+1)^2$

provided this shall have same remainder when divided by $(x+1)$ and $(x+1)^2$

when we divide by (x+1)^2 we shall have a linear polynomial say m(x+1) + c and when we divide by (x+1) it shall be d and both are same if m= 0 and m+c = d

so if we convert
f(x) as a polynomial of (x+1) the coefficient of x should be zero

or f(x-1) should have coefficient of x to be zero

now we provide the solution based on premise

$f(x-1)=2008+2007(x-1)+2006(x-1)^2+\cdots+3(x-1)^{2005}+2(x-1)^{2006}+(x-1)^{2007}$

should have coefficient of x to be zero

the coefficient of x
$= 2007 + 2006 * (-2) + 2005 * 3 \cdots + 2 * 2006 - 2007 = 0$

hence proved
 
kaliprasad said:
$f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$1st we provide the premise

this shall have same remainder when divided by $x(x+1)$ and $x(x+1)^2$

provided this shall have same remainder when divided by $(x+1)$ and $(x+1)^2$

when we divide by (x+1)^2 we shall have a linear polynomial say m(x+1) + c and when we divide by (x+1) it shall be d and both are same if m= 0 and m+c = d

so if we convert
f(x) as a polynomial of (x+1) the coefficient of x should be zero

or f(x-1) should have coefficient of x to be zero

now we provide the solution based on premise

$f(x-1)=2008+2007(x-1)+2006(x-1)^2+\cdots+3(x-1)^{2005}+2(x-1)^{2006}+(x-1)^{2007}$

should have coefficient of x to be zero

the coefficient of x
$= 2007 + 2006 * (-2) + 2005 * 3 \cdots + 2 * 2006 - 2007 = 0$

hence proved

Ops, I want to apologize to kaliprasad for not replying to your solution earlier...sorry, Kali!:(

Thanks for your participation and your great solution by the way. :cool:

I have another solution that I want to share here with you and MHB:

We have that

$\begin{align*}f(x)&=2008+1004x+1003(x^3+2x^2+x)+\cdots+3(x^{2003}+2x^{2002}+x^{2001})+2(x^{2005}+2x^{2004}+x^{2003})+(x^{2007}+2x^{2006}+x^{2005})\\&=x(x+1)^2(1003+\cdots+3x^{2000}+2x^{2002}+x^{2004})+(1004x+2008)\end{align*}$

from which the result follows with remainder $1004x+2008$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top