Is the Remainder of Polynomial $f(x)$ the Same for Two Different Divisors?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Division Polynomial
Click For Summary
SUMMARY

The discussion focuses on proving that the remainder of the polynomial \( f(x) = 2008 + 2007x + 2006x^2 + \cdots + 3x^{2005} + 2x^{2006} + x^{2007} \) is identical when divided by \( x(x+1) \) and \( x(x+1)^2 \). Participants engage in sharing solutions and insights, emphasizing the mathematical properties of polynomial division. The consensus is that the structure of the polynomial allows for consistent remainders across these two divisors.

PREREQUISITES
  • Understanding of polynomial division
  • Familiarity with the Remainder Theorem
  • Knowledge of algebraic manipulation
  • Basic concepts of limits and continuity in calculus
NEXT STEPS
  • Explore polynomial long division techniques
  • Study the Remainder Theorem in depth
  • Investigate properties of polynomial remainders with multiple divisors
  • Learn about the implications of polynomial degree on remainder behavior
USEFUL FOR

Mathematicians, educators, and students engaged in algebra and polynomial theory, particularly those interested in polynomial division and its applications.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that the remainder of the polynomial $f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$ is the same upon division by $x(x+1)$ as upon division by $x(x+1)^2$.
 
Mathematics news on Phys.org
$f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$1st we provide the premise

this shall have same remainder when divided by $x(x+1)$ and $x(x+1)^2$

provided this shall have same remainder when divided by $(x+1)$ and $(x+1)^2$

when we divide by (x+1)^2 we shall have a linear polynomial say m(x+1) + c and when we divide by (x+1) it shall be d and both are same if m= 0 and m+c = d

so if we convert
f(x) as a polynomial of (x+1) the coefficient of x should be zero

or f(x-1) should have coefficient of x to be zero

now we provide the solution based on premise

$f(x-1)=2008+2007(x-1)+2006(x-1)^2+\cdots+3(x-1)^{2005}+2(x-1)^{2006}+(x-1)^{2007}$

should have coefficient of x to be zero

the coefficient of x
$= 2007 + 2006 * (-2) + 2005 * 3 \cdots + 2 * 2006 - 2007 = 0$

hence proved
 
kaliprasad said:
$f(x)=2008+2007x+2006x^2+\cdots+3x^{2005}+2x^{2006}+x^{2007}$1st we provide the premise

this shall have same remainder when divided by $x(x+1)$ and $x(x+1)^2$

provided this shall have same remainder when divided by $(x+1)$ and $(x+1)^2$

when we divide by (x+1)^2 we shall have a linear polynomial say m(x+1) + c and when we divide by (x+1) it shall be d and both are same if m= 0 and m+c = d

so if we convert
f(x) as a polynomial of (x+1) the coefficient of x should be zero

or f(x-1) should have coefficient of x to be zero

now we provide the solution based on premise

$f(x-1)=2008+2007(x-1)+2006(x-1)^2+\cdots+3(x-1)^{2005}+2(x-1)^{2006}+(x-1)^{2007}$

should have coefficient of x to be zero

the coefficient of x
$= 2007 + 2006 * (-2) + 2005 * 3 \cdots + 2 * 2006 - 2007 = 0$

hence proved

Ops, I want to apologize to kaliprasad for not replying to your solution earlier...sorry, Kali!:(

Thanks for your participation and your great solution by the way. :cool:

I have another solution that I want to share here with you and MHB:

We have that

$\begin{align*}f(x)&=2008+1004x+1003(x^3+2x^2+x)+\cdots+3(x^{2003}+2x^{2002}+x^{2001})+2(x^{2005}+2x^{2004}+x^{2003})+(x^{2007}+2x^{2006}+x^{2005})\\&=x(x+1)^2(1003+\cdots+3x^{2000}+2x^{2002}+x^{2004})+(1004x+2008)\end{align*}$

from which the result follows with remainder $1004x+2008$
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K