Schwarzschild Spacetime: Ellipsoidal for Moving Observers?

center o bass
Messages
545
Reaction score
2
In special relativity a sphere in the rest frame for some observer looks like an ellipsoid for an observer with a relative velocity.

Can we use the same reasoning for the Schwarzschild spacetime? Namely that a spherically symmetric spacetime produced by a spherical mass look ellipsoidal for an observer with a relative velocity compared to that body?
 
Physics news on Phys.org
center o bass said:
Can we use the same reasoning for the Schwarzschild spacetime?

No, because Schwarzschild spacetime itself is not a spherical object. See below.

center o bass said:
a spherically symmetric spacetime produced by a spherical mass look ellipsoidal for an observer with a relative velocity compared to that body?

Are you asking about a spherical object (like an idealized ball or an idealized planet or star) or about a spherically symmetric spacetime? They're two different things.

For a spherical object, assuming the effects of any other objects can be neglected, yes, as long as you are far enough away from it, the spacetime curvature due to the body's mass can be ignored and you can treat it as just a spherical object in flat spacetime, in which case things work the same as they do in SR.

For a spherically symmetric spacetime, you can't look at it "from the outside"; you're in it. The spherical symmetry of the spacetime is a global geometric property, which you can measure and verify regardless of your state of motion within that spacetime.
 
As Peter noted, symmetries are invariants, that can be stated in terms if e.g. existence of different types killing vector fields. However, typically, only well chosen coordinates manifest all symmetries the sense of the metric expressed in those coordinates showing them. Thus standard inertial coordinates in flat spacetime show homogeneity and isotropy. However, Rindler coordinates (natural for a uniformly accelerating observer), show neither isotropy nor homogeneity in the metric expression. The symmetries haven't disappeared, but they are not manifest in those coordinates. Similarly, a spherically symmetric spacetime booted ultra-relativistically produces the Aichelburg-Sexl metric, which does not show spherical symmetry in coordinate expression:

http://en.wikipedia.org/wiki/Aichelburg–Sexl_ultraboost
 
center o bass said:
In special relativity a sphere in the rest frame for some observer looks like an ellipsoid for an observer with a relative velocity.

Can we use the same reasoning for the Schwarzschild spacetime? Namely that a spherically symmetric spacetime produced by a spherical mass look ellipsoidal for an observer with a relative velocity compared to that body?

GR doesn't really have "frames". So we have to do a bit of translation work to interpret the question. It's not clear to me at the moment the best way to do this :(. My current best attempt at an interpretation is "what does the Schwarzschild geometry look like in the fermi-normal coordinates associated with a moving observer". Unfortunately this isn't an easy question to answer, while Fermi normal coordinates are conceptually useful, giving the best extended equivalent to the Newtonian idea of a frame that GR has to offer, they are hard to calculate. I would guess that a spherical shell of constant Schwarzschild time would be converted into a non-synchronized ellipsoidal shell in fermi normal coordinates, but I haven't done the calculations to attempt to show this and I'm unlikely to.

If you consider a small region around some point where the curvature effects are small enough to be neglected, you can do something much simpler than use Fermi Normal coordinates. Instead, you use the idea of a local "frame field" in the flat tangent space. This also is friendly to one's Newtonian intuition, and it's easier to calculate when you are interested in a region close enough to the observer that you don't have to account for curvature effects.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top