lennyleonard
- 21
- 0
Hi everyone!
Here's my problem:
Let's suppose that we have a functional I[f,g]=\int{L(f,\dot{f},g,\dot{g},x)\,dx}.
Is it right to say that the variation of I whit respect to g (thus taking g\;\rightarrow\;g+\delta g) is \delta I=\int{[L(f,\dot{f},g+\delta g,\dot{g}+\delta \dot g,x)-L(f,\dot{f},g,\dot{g},x)]\,dx}=\int{(\frac{\partial L}{\partial g}\delta g+\frac{\partial L}{\partial \dot{g}}\delta \dot{g})\,dx}??
Thanks for your disponibility!
Here's my problem:
Let's suppose that we have a functional I[f,g]=\int{L(f,\dot{f},g,\dot{g},x)\,dx}.
Is it right to say that the variation of I whit respect to g (thus taking g\;\rightarrow\;g+\delta g) is \delta I=\int{[L(f,\dot{f},g+\delta g,\dot{g}+\delta \dot g,x)-L(f,\dot{f},g,\dot{g},x)]\,dx}=\int{(\frac{\partial L}{\partial g}\delta g+\frac{\partial L}{\partial \dot{g}}\delta \dot{g})\,dx}??
Thanks for your disponibility!