B Is the wave function collapse asymmetrical in time?

IvicaPhysics
Messages
12
Reaction score
0
Suppose the Copenhagen interpretation is correct. And we reverse time, what happens. If a wave function has collapsed, and we found a particle somewhere. Now, I turn back time( just hypothetically), what would happen? Would the wave function uncollapse and would the particle then appear at some other location?
THIS IS MY REALLY BURNING QUESTION:
Let's suppose it does uncolapse, where then would we find the particle.
Before experiment: Particle is at place A
After experiment: The wave function has collapsed and the particle is now at location B
Now I turn back time and...
The wave function uncollapses( let's say it does), and it collapses again but before the experiment, since time is flowing backwards. Before the experiment we measured the particle so in time reverse that would collapse it. Would the particle again be at location A, or some new location C, because again it is wave of probbability, so is it certain that it will appear at A?
If we turn back time after a wave function collapse will the past happen the same way?
 
Physics news on Phys.org
The instaneous and non-unitary collapse implied by the Copenhagen interpretation is not time-reversible.
 
  • Nugatory said:
    The instaneous and non-unitary collapse implied by the Copenhagen interpretation is not time-reversible.
    Thank you :)
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...