.Scott
Science Advisor
Homework Helper
- 3,826
- 1,882
You are stumbling on semantics.erobz said:The frictional force is the only force acting on the box (in the direction of motion). If ##\mu_k## is tending to some non-zero ##\mu_s## ( as you say) then by some other mechanism the frictional force must be tending to zero as ##v \to w##
In the Freshman model, ##\mu_k## and ##\mu_s## are constant for an given experimental set-up.
For your setup, both can be used to directly calculate a maximum frictional force (max=##N\mu##): Not the force, just a limit to the force, the maximum.
Also: For ##\mu_k##, the direction of this maximum force will always be opposite to the direction of the relative motion of the surfaces. For ##\mu_s##, the direction of this maximum force will always be opposed to the applied force.
The motion of the belt is clouding the issue.
If we attached the box to a string and allowed it to bounce back and forth across the surface of the belt, then when the box reached its furthest extend to the left or right, the magnitude of the frictional force would stay the same, but the direction of the frictional force would reverse.
In this situation, I think you can see what that "other mechanism" is - it's the direction of the relative movement of the box and the belt. When that motion goes to zero, the situation abruptly changes. It is no longer possible for the direction of the force to be opposite the relative motion because there is no longer any relative motion.