Some comments; maybe someone else can extend:
I think no, but I have no proof. By invariance of domain, the map cannot be onto, since ℝn is open in itself, and, if it where onto ℝ, you could compose it with the inclusion (an inclusion, actually) into ℝn (any n>1 will do ) , concluding that there is a copy of
ℝ that is open in ℝn, i.e., assume f(ℝn)=ℝ, and then let i be the standard inclusion into ℝn, i.e, i(x)=(x,0,0,...,0). Then i°f is a map whose image is a copy of ℝ, which is open in ℝn.
Or, you can use Sard's theorem (we had a similar problem here a while back): Since every point in ℝn is a critical point of the differentiable map f, the image of ℝn under this map must have measure zero in ℝ.