Is There a Formula for Fitting a Sum of Exponentials to Data Points?

  • Thread starter Thread starter Gonzolo
  • Start date Start date
  • Tags Tags
    Exponential Fit
Gonzolo
Hi, I want fit the following equation to a set of data points :

y = A(exp(-Bx)-exp(-Cx)))

I found how to determine A and B for one exp : y = Aexp(-Bx), but I'm not sure if there's a formula for A, B and C in such a sum (or difference) of exponentials. Thanks.
 
Mathematics news on Phys.org
There isn't a formula but there is a general concept:
y = A(exp(-Bx)-exp(-Cx)))
has 3 undetermined constants, A, B, and C so you will need to solve three equations for them. Take three of your (x,y) data points and plug the values for x and y into the formula. Solve those three equations for A, B, C.

If you have more than 3 data points, and the formula is not and exact fit, the result will depend upon which 3 you choose.
 
I have tried to fit using the least squares method (with Excel) and that is what I find, that the results depend on what initial values I choose. So if what your saying in your last sentence is generally true, I suppose there no way to find the absolute minimum of the least squares sum, right?

If by exact, you mean that each data point should be on the curve exactly, then no it cannot be exact, since it is true experimental data, and there is a little noise.

Is there a way to determine an error for A, B, and C on the best fit that I choose?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
1K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
16
Views
4K
Replies
9
Views
3K
Replies
1
Views
4K
Replies
19
Views
2K
Back
Top