Is There a General Theorem for the Sum or Difference of Terms^n?

  • Thread starter Thread starter Jhenrique
  • Start date Start date
Jhenrique
Messages
676
Reaction score
4
Binomials

I was verifying that \\x^2-y^2=(x-y)(x+y) \\x^3-y^3=(x-y)(x^2+xy+y^2) and I realized that can there is a formulation more general like the theorem binomial... my question is: exist a general theorem for sum or difference of terms^n ?
 
Last edited:
Mathematics news on Phys.org
You can always proceed with the division of x^n-y^n by x-y.
Then you can guess and then demonstrate what the general solution is.

For example:

(x^11 - y^11)/ (x - y) =
x^10 + x^9 y + x^8 y^2 + x^7 y^3 + x^6 y^4 + x^5 y^5 + x^4 y^6 + x^3 y^7 + x^2 y^8 + x y^9 + y^10

Try to be specific and by considering multiple examples, you can often find the path to a generalization.
Never try to be general too early.
 
(xn - yn) = (x - y)(xn-1 + xn-2y + xn-3y2 + ... + yn-1)

is considered fairly elementary, but often useful. It is fairly easy to see it is true if you just multiply the x of the first bracket by the second bracket on one line and -y from the first bracket by the second bracket on the second line you will see.

A connection you should not fail to observe is that this gives you the answer to getting the sum of a geometric series which is

1 + x + x2 + xn-1

(I have made the final term xn for easy comparison, but you you'll be able to see what the sum is if the final term is xn).

The most useful of all applications of this is when x < 1 and n is infinite.
 
  • Like
Likes 1 person
epenguin said:
(xn - yn) = (x - y)(xn-1 + xn-2y + xn-3y2 + ... + yn-1)

Very good!

And which the formula for xn + yn and for xn + yn + zn?
 
Jhenrique said:
Very good!

And which the formula for xn + yn and for xn + yn + zn?
There is a well-known formula for x3 + y3 (= (x + y)(x2 - xy + y2), and formulas for higher odd powers of xn + yn are fairly well known. Hint: one factor is x + y. You can get the other factor by long division.

If there's a formula for xn + yn + zn I'm not aware of it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top