Is There a Parameter a Such That f(x) Equals ax for All x?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Parameter Proof
transgalactic
Messages
1,386
Reaction score
0
f(x) is a continues function on (-infinity,+infinity) for which
f(x+y)=f(x)+f(y)

prove that there is parameter a for which f(x)=ax for every real x

i was given a hint to solve it for x in Q

there is no much thing i can do here for which i can use theorems

the only thing i am given that its continues

lim f(x)=f(x)

??
 
Physics news on Phys.org
1. Prove by induction that f(nx)= nf(x) for any positive integer n and any real number x.

2. From that, taking x= 0, show that f(0)= 0.
From here on, n will represent any integer and x any real number.

3. Prove, by looking at f((n+(-n))x), that f(-nx)= -f(nx).

3. Prove, by looking at f(n(x/n)), that f(x/n)= f(x)/n.

4. Prove that, for any rational number, r, f(r)= rf(1).

5. Use the continuity of f to show that f(x)= xf(1) for any real number, x.
 
regarding 1:
f(kx)=kf(x) given
prove f(kx + x)=(k+1)f(x)

i don't know how to use the given
??
 
f(kx + x) = f(kx) + f(x) = kf(x) + f(x) = (k + 1)f(x)
The first step of the chain of equality above comes from the assumption in the original problem.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top