Is There a Requirement for Integrability in This Proof for an Open Ball in R^n?

  • Thread starter Thread starter Oiler
  • Start date Start date
  • Tags Tags
    Function Proof
Oiler
Messages
2
Reaction score
0
A is the open unit ball in R^n. Let B be the compliment of A (R^n\A).
If f: B -> R is defined by f(x) = ||x||^-3... (where x is in B)

For n=2, using an increasing union of compact sets show that f is integrable on B.

For n=3, show that f is not integrable.
____________________________________________

Does an increasing union of sets here mean that each compact set must be contained entirely in the next? It seems clear here that f will be bounded for n=2 (from 0 to 1), and thus would suggest that it is integrable, but then why not n=3? I seem to be missing a requirement for f being integrable here, any help would be appreciated.
 
Physics news on Phys.org
I did this question (I'm assuming that you've just taken this from the assignment) by choosing an obvious increasing union of compact sets. Polar coordinates, spherical coordinates hmm...

The fact that f is bounded doesn't really tell you that much. If you look at the definition you need a certain limit to exist.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top