Is there a smallest point in the interval [0,1] where f attains the value of 0?

cxc001
Messages
15
Reaction score
0
Suppose f:[0,1]->R is continuous, f(0)>0, f(1)=0.
Prove that there is a X0 in (0,1] such that f(Xo)=0 & f(X) >0 for 0<=X<Xo (there is a smallest point in the interval [0,1] which f attains 0)

Since f is continuous, then there exist a sequence Xn converges to X0, and f(Xn) converges to f(Xo).
Since 0<=(Xo-1/n)<Xo
Can I just let Xn=Xo-1/n so that 0<=Xn<Xo
So when Xn->Xo, f(Xn)->f(Xo)

I wasn't convinced enough this is the right approach...
 
Physics news on Phys.org
No, this won't work, because you begin by assuming the existence of the number x_0, which existence you are required to prove.

I suggest two other approaches, either of which will work.

1. What does the set f^{-1}(\{0\}) look like, topologically?

2. What would happen if the set of points x such that f(x) = 0 had no smallest element in [0,1]?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top