I thought the riddle would last a little longer, but
@andrewkirk came up with a written answer in 15 minutes !
An alternative answer is the following: there are 60 equal angular sections on the watch. Every hour, the hour needle crosses exactly five angular sections, and between two consecutive hours, it crosses an additional 1/12 of what crosses the minutes needle. A relationship between time ##h : m## and the positions ##x_h## and ##x_m## (in number of angular sections) of the needles is
##x_m = m \quad## and ##\quad x_h = 5(h \text{ mod } 12)+ x_m/12##
The problem consists in finding the pairs ##(h,m)## such that ##x_h = x_m##.
This happens whenever ##m = \frac{5\times 12 \times (h \text{ mod } 12) } {11} ##.
The fractional part of ##m## must be converted in seconds by multiplying it by 60.
So the exact times of needles alignments are :
## h## hours, ##\lfloor \frac{5\times 12 \times (h \text{ mod } 12) } {11} \rfloor ## minutes, and ## 60\times ( \frac{5\times 12 \times (h \text{ mod } 12) } {11} - \lfloor \frac{5\times 12 \times (h \text{ mod } 12) } {11} \rfloor)## seconds.
So if you want to see a needle eclipse, take a look at your watch at 1:05:27 !