Is there a Whole Number Multiple of Pi Closest to a Whole Number?

  • Thread starter Thread starter danyo
  • Start date Start date
  • Tags Tags
    Pi
danyo
Messages
14
Reaction score
0
Hi everyone,

About 15 minutes ago I came up with a problem... What whole number multiple of pi would result in a number closest to a whole number?

Does a single whole number multiple exist, and can we... prove it?


Thanks for help in advance!


-Daniel
 
Physics news on Phys.org
danyo said:
Hi everyone,

About 15 minutes ago I came up with a problem... What whole number multiple of pi would result in a number closest to a whole number?

Does a single whole number multiple exist, and can we... prove it?


Thanks for help in advance!


-Daniel

There is no solution to that problem. The thing is that we can get n\pi as close to an integer as we like. This is basically Kroneckers density theorem. Of course, a nonzero multiple of \pi can never actually equal an integer (since that would imply that \pi is rational), but it can be arbitrary close.

The number \pi is not special here, it works for any irrational number.
 
micromass said:
There is no solution to that problem. The thing is that we can get n\pi as close to an integer as we like. This is basically Kroneckers density theorem.

Thank you for the reply, micromass! I was not familiar with Kronecker's density theorem, but its logic clarifies this problem. I wonder if there's any pattern in what integers n would bring us closer to a whole number...

Ah, well there goes my bedtime tonight! Thanks for the direction :D
 
danyo said:
I wonder if there's any pattern in what integers n would bring us closer to a whole number...
That is a much more interesting problem (to me). For certain types of irrational numbers, there is indeed a pattern (you can check out Pell's equation and Continued Fractions to find ways to very closely approximate square roots).

However, here is how you would find such integers for pi. We know the close approximation of 22/7 for pi. Then we have:

22/7≈pi
22≈7pi

And verifying, we have 7*pi≈21.99114858

Another close approximation is 333/106:

333/106≈pi
333≈106pi

and 106pi≈333.0088213...

I hope this proves useful!
 
You might also be interested in the following thread from the wu riddle site;

"Say I am given a number X = A*[sqrt]2 + B*[pi], where A and B are integers.
Given X, how can you find A and B, without using brute force?"

It comes with a long discussion.

see
http://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi
 
I ran a quick computer program just for interest sake.

78256779
103767361
129277943
131002976
156513558
180299107
182024140
183749173
205809689
207534722
209259755
233045304
234770337
236495370
258555886
260280919
262005952

Those numbers if multiplied with pi will give you a number so close to a integer that the decimal part can't fit in a double precision floating point. As stated above you can't actually get a integer from multiplying a integer with pi (except 0)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top