Is there an isomorphism from G to (G/M)x(G/N) with the kernel M\bigcapN?

  • Thread starter Thread starter symbol0
  • Start date Start date
symbol0
Messages
77
Reaction score
0
Let M and N be normal subgroups of G such that G=MN.
Prove that G/(M\bigcapN)\cong(G/M)x(G/N).

I tried coming up with an isomorphism from G to (G/M)x(G/N) such that the kernel is M\bigcapN, so that I can use the fundamental homomorphism theorem.
I tried f(a) = (aM, aN). It is an homomorphism and M\bigcapN is the kernel but I'm having a hard time showing it is onto.

I would appreciate any help.
Thank you
 
Physics news on Phys.org
So you need to show that for all g, g' in G, there is an a in G such that: (g M, g' N) = (a M, a N).

I haven't worked this out in detail, but: since G = MN, you can write g = m n, g' = m' n'. I suspect that a = m' n might do the trick.
You will need that M and N are normal, so in particular h M = M h, h N = N h for all h in G.
 
Thank you Compuchip
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top