Is thermal equilibrium possible by the Law of Cooling?

AI Thread Summary
The Law of Cooling states that the rate of heat loss from an object is proportional to the temperature difference between the object and its surroundings. The equation used to model this process shows that the ambient temperature acts as a horizontal asymptote, suggesting that the object never fully reaches the ambient temperature. This implies that thermal equilibrium is not achieved in a strict mathematical sense. However, in practical terms, systems can be considered to reach a steady state when the temperature is sufficiently close to the ambient temperature, often around 99% of it. Real-world systems exhibit "lumpy" behavior at a microscopic level, leading to deviations from the ideal mathematical model.
marexz
Messages
3
Reaction score
0
Law of cooling states that the rate of loss of heat by a body is directly proportional to the excess temperature of the body above that of its surroundings. The equation of determining temperature in time T(t)=Ta+(T0-Ta)*e^kt (Ta-ambient temperature, T0-initial temperature, k-heat transfer constant) is a standart example of exponential decay BUT I don't understand the fact that in this equation ambient temperature in a graph is a horizontal asymptote, and If I am not wrong, then the graph goes to infinity never reaching this point. That means the object which is cooling down never actually reaches temperature of the surroundings therefore thermal equilibrium is not reached (also remembering that ambient temperature is all the way a constant). How is that possible?

Thank you!
 
Science news on Phys.org
I think that you can reasonably assume that the solution has reached the steady state when the temperature is 0.99 the ambient temperature
 
marexz said:
ambient temperature in a graph is a horizontal asymptote, and If I am not wrong, then the graph goes to infinity never reaching this point. That means the object which is cooling down never actually reaches temperature of the surroundings therefore thermal equilibrium is not reached (also remembering that ambient temperature is all the way a constant). How is that possible?

You'll see this happen in many problems: a bouncing ball slowing down and coming to rest, a damped harmonic oscillator, equalizing pressure between two volumes of gas, pretty much any situation in which a difference (in your question, the temperature difference between object and ambient) forces an action (in your question, a heat flow) that tends to reduce the difference.

What's going on in all of these problems is that the perfect mathematical curve with its asymptote is a description of an ideal system that exactly obeys the math. Real-world systems do not quite conform to this ideal; they're made up of atoms so if you study them at a fine enough scale their behavior is "lumpy", not a perfect mathematical smooth curve. When the lumpiness gets to be of about the same scale as the distance between the mathematical curve and the asymptote, we've reached steady state.
 
  • Like
Likes 1 person
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top