Is this a correct use of the Order Limit Theorem?

  • Thread starter Thread starter jdinatale
  • Start date Start date
  • Tags Tags
    Limit Theorem
jdinatale
Messages
153
Reaction score
0

Homework Statement


Limits, if they exist, must be unique

Homework Equations


Order Limit Theorem:

Assume \lim a_n = a and \lim b_n = b.

(ii) If a_n \leq b_n, for all n \in \mathbf{N}, then a \leq b

The Attempt at a Solution



limitorder.jpg
 
Physics news on Phys.org
Looks fine to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top