kev said:
The nice thing about the thought experiment in the OP is that it does provide us with a way (in principle) to define "the velocities of the galaxies relative to yourself". Attach a wire to the distant galaxy with a marker on the end of the wire, and the "real" velocity of the distant galaxy is the velocity of the wire end marker as it passes close by you. Now I know a lot of counter arguments have been advanced about requiring wires of infinite rigidy etc, but we take a less extreme example of not-so-distant galaxies moving at not so-so-extreme velocities and the "wire speed" would give a good working definition of the real relative velocity of the galaxy.
I agree that the OP's thought experiment is fascinating, and I want to thank you for steering the discussion back to it.
It's true that in the limit of not-so-distant galaxies, we can define an unambiguous notion of relative speed. However, I don't think that should be taken as implying the same thing for more distant galaxies. The equivalence principle guarantees that spacetime is locally Minkowski, and nobody is disputing that there is a preferred notion of relative velocity in Minkowski space. The issue is whether that can be bootstrapped up to cosmological distances.
kev said:
Now consider a very simplisitic cosmological model that consists of dust moving at random relativistic velocities, starting out from a very small confined region. Over time the the model settles down so that to any given observer, the velocity of any particle is roughly proportional to its distance from the observer. In this over simplisitic model the velocity of the particles is given by the relativistic Doppler factor as:
\frac{v}{c} = \frac{(z+1)^2-1}{(z+1)^2+1}
where z is the standard redshift factor used in cosmology.
It is easy to see that the simplistic equation above gives v/c <1 for any positive finite value of z.
What you're describing here is the Milne universe. Since the Milne universe is a flat spacetime, you could say there is a preferred notion of relative velocity, which you can get by describing it in standard Minkowski coordinates. However, there is also a set of co-moving coordinates that you could argue is also natural to use -- maybe even more natural, since we have all these dust particles that define a natural local rest frame (in the same way that the CMB defines a natural local rest frame in our own universe). You now have a problem with defining the relative velocity of a distant object, because what you have in mind is the object's velocity "now," but Minkowski observers and comoving observers disagree on simultaneity. This isn't an issue as long as the object is moving inertially, because its velocity isn't changing, so the result doesn't depend on what you mean by "now." But it is an issue if, for example, the object has ever experienced an acceleration at any time in the past.
kev said:
Of course, the above equation does not take gravity into account and is a purely kinematic SR model. Now taking gravity into account makes things much more complicated, but I would like to suggest the following "big picture". It is obvious that in this model the average distance between dust particles increases over time and the average density of the universe therefore decreases over time. Now if we take the Schwarzschild solution, we can observe that the average density calculated by dividing the enclosing sphere by the enclosed mass is greater nearer the surface of the gravitational mass than further away, that there is relationship between increased gravitational gamma factor/ time dilation and increased mass density. Now if we apply this principle to the expanding universe (and it does not matter if we have an infinite universe as long as the average distance between particles is increasing) we might be able to conclude that when a light signal left a distant galaxy in the distant past, the density of the universe was higher and the gravitational potential was lower.
Here you have a problem because nontrivial cosmological solutions are time-varying, so you can't define a gravitational potential. There's a good discussion of this in Rindler, Essential Relativity, 2nd ed., section 7.6.
kev said:
Now we know in the Schwarzschild solution, that a photon climbing from a low gravitational to high gravitational potential is red shifted and it is possible that a photon traveling from a time where the density of the universe was higher and arriving when the average density is lower will be red shifted due the change in density over the travel time of the photon. Now I am not saying that ALL the red shift is due to the change in average density of the universe, because it is implicit in my simple model that particles are MOVING away from each other, but I am also saying that that not all the redshift is purely due to motion away from us. Now although I can not put any equations to this, I think the overall big picture is that "real" relative velocitites are not as high as the red shifts suggest. Some of the red shift (in my simplistic mind view) is due to a temporal difference in gavitational potential during the travel time of the photon.
This is exactly the ambiguity that makes it impossible to define a gravitational potential when you have a time-varying solution. You can never establish how much of the redshift was kinematic and how much was gravitational. As an extreme example, imagine that you live in galaxy A, in a closed universe. You send out a photon, and a long time later you receive the same photon back, red-shifted. How much of this red-shift was kinematic, and how much was gravitational? If you know that it was your own photon that you received, then you could say that obviously it was 100% gravitational, and your galaxy's present velocity relative to its past velocity is zero. On the other hand, a distant observer B will say, "No, kev, I've been watching your galaxy A the whole time, and it's clearly been accelerating. It accelerated so that by the time it received the photon, you were moving toward the photon at a velocity higher than you had when you emitted it. Therefore you're seeing a combination of kinematic blueshift and gravitational redshift." Yet another observer, C, could say that your galaxy's acceleration was in the opposite direction, so they'd claim that it was a combination of kinematic redshift and gravitational redshift.
Although this scenario of galaxies A, B, and C is posed in the case of a closed universe, I think the same issues occur in open cosmologies. When a photon is emitted by D and received by E, we can't resolve the ambiguity of kinematic versus gravitational redshifts unless we can determine how fast D is moving "now," and we can't do that without figuring out how much D's velocity has changed since the time of emission. But different observers disagree on that. D says he's remained at rest during the whole time it took the photon to get to E. E says D has been accelerating.
kev said:
The nice thing about this picture is that an observer on the distant galaxy will see us redshifted by exactly the same factor for eactly the same reasons and there is no preferential viewpoint or location in this model.
I think the example of A, B, and C above shows that this method actually has an observer-dependence involved.
kev said:
The problem I have with "galaxies embedded in 'something" flowing away from us" is the etherist overtones of the "substance" the galaxies are at rest with or embedded in. Do the FLRW type models make some form of Lorentz ether official?
FLRW models have a preferred frame of reference, which in our universe can be interpreted as the frame of the CMB (i.e., in which the dipole variation of the CMB across the sky vanishes). This is different from an ether theory, in which the laws of physics have a preferred frame of reference. As an extreme example, consider a Milne model in which all the test particles are at rest relative to all the other test particles. There is clearly a preferred frame, but it's not a preferred frame built into the laws of physics.
kev said:
It is obvious that FLRW type metrics and kinematic type models predict different results for the velocity of the end of wire marker passing us, even at sub luminal velocities, so the models are not just a difference in philosophical interpretation.
I'm not following you here. What do you mean by "kinematic type models?"
Returning to the issue of simultaneity that I raised above, I think I can see a good general way to analyze the rope paradox as initially posed by the OP.
The rope paradox has problems similar to the ones in the ABC scenario I described above. In a closed universe, you can wrap a rope all the way around the universe and determine that your own galaxy's velocity, relative to itself, right "now," is some huge number (perhaps greater than the speed of light). This conclusion is obviously absurd, so there's clearly something wrong here.
Without resorting to a closed universe, we can still produce issues of the same type. If the rope is tied to D, and E observes it going by at some speed, E can't conclude that that is D's speed "now." The information conveyed by the rope's end is at least as old as the time it takes sound waves to travel the length of the rope. If E is going to infer D's velocity "now," E has to correct for the amount of change in D's velocity during that time. Different observers say different things about that change in velocity. D says it's zero. E says it's not zero.
Since the rope end's velocity doesn't tell us anything about D's velocity relative to E right "now," there is no obvious reason to think that the rope's end would have a superluminal velocity, even if D's coordinate velocity relative to E is superluminal. If we see the rope going by at 98% of the speed of light, we can probably conclude that the rope has broken a long time ago, and furthermore the time it would have taken a vibration to travel from D to E is probably greater than the present age of the universe.