I Is this derivation of the Born rule circular in any way?

JG11
Messages
18
Reaction score
2
Physics news on Phys.org
JG11 said:
Is this circular?

I don't know about circular, but it seems invalid. On p. 3, right column, they argue that any sequence of results from a binary measurement (i.e., only two possible results, ##0## or ##1##) will give a probability 1/2 in the limit of large numbers. But according to the MWI, that's not the case; according to the MWI, if we do the measurement ##N## times, every possible sequence of ##N## bits will be a term in the superposition that results. Most of those sequences do not have half ##0## and half ##1## bits, or even close to it.

The unstated assumption that is being used in their heuristic reasoning is that only one result occurs for each measurement. They even say measurements are made by "a detector of discrete nature that is found only in one state at a time". But under the MWI, this is false; every result occurs every time a measurement is made, each possible result being one term in the superposition that comes out of the measurement interaction. So it is simply not true in the MWI that a "discrete" detector (one that gives results from a discrete set instead of a continuous one) is "found only in one state at a time".

In other words, the paper claims to derive the Born rule from the MWI, but what it's actually doing is making an assumption that's inconsistent with the MWI.
 
PeterDonis said:
I don't know about circular, but it seems invalid. On p. 3, right column, they argue that any sequence of results from a binary measurement (i.e., only two possible results, ##0## or ##1##) will give a probability 1/2 in the limit of large numbers. But according to the MWI, that's not the case; according to the MWI, if we do the measurement ##N## times, every possible sequence of ##N## bits will be a term in the superposition that results. Most of those sequences do not have half ##0## and half ##1## bits, or even close to it.

The unstated assumption that is being used in their heuristic reasoning is that only one result occurs for each measurement. They even say measurements are made by "a detector of discrete nature that is found only in one state at a time". But under the MWI, this is false; every result occurs every time a measurement is made, each possible result being one term in the superposition that comes out of the measurement interaction. So it is simply not true in the MWI that a "discrete" detector (one that gives results from a discrete set instead of a continuous one) is "found only in one state at a time".

In other words, the paper claims to derive the Born rule from the MWI, but what it's actually doing is making an assumption that's inconsistent with the MWI.
Interesting. I found another one that uses time symmetry https://arxiv.org/pdf/1505.03670.pdf . It looks to me that the MWI can use this to derive the Born rule.
 
JG11 said:
It looks to me that the MWI can use this to derive the Born rule.

I don't think so. This paper makes the same unstated assumption the other one did: that measurements have single results. The MWI violates this assumption.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
7
Views
3K
Replies
14
Views
2K
Replies
22
Views
2K
Replies
96
Views
8K
  • Poll Poll
2
Replies
54
Views
6K
Replies
3
Views
1K
Replies
34
Views
4K
Replies
5
Views
2K
Back
Top