Is This Moment Generating Function Expression Correct?

AI Thread Summary
The moment generating function expression presented is debated regarding its correctness, particularly in relation to the conditions under which it holds true. It is suggested that the expression is valid only if the moment generating function is exponential, aligning with a Taylor expansion. This holds for specific cases like a Wiener process but may not be applicable in general scenarios. The discussion emphasizes the importance of the underlying distribution when evaluating the moment generating function. Further exploration of the final form is encouraged to clarify its implications.
donutmax
Messages
7
Reaction score
0
Is the following correct?

M(t)=1+t\mu'_1+\frac{t^2}{2!}\mu'_2+\frac{t^3}{3!}\mu'_3+... =\sum_{n=0}^{\infty} \frac {E(Y^n)t^n}{n!}

where
\mu'_n=E(Y^n)
 
Last edited:
Mathematics news on Phys.org
I think that will only be true if your moment generating function is an exponential - in which case you are just doing a Taylor expansion. This is true for a Wiener process - but I don't think the relation you have holds in general.

Regards,
Thrillhouse86
 
<br /> m_Y(t) = E(e^{ty}) = \int e^{ty} \, dF(y) = \int \sum_{n=0}^\infty \frac{(ty)^n}{n!}\,dF(y) = \sum_{n=0}^\infty \left(\int \frac{(ty)^n}{n!} \, dF(y) \right)<br />

What do you get from working with the final form above?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top