Is this proof of the uncountablility of the irrationals valid?

  • Thread starter Thread starter serllus reuel
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary

Homework Help Overview

The discussion revolves around the validity of a proof concerning the uncountability of the set of irrational numbers. Participants explore the nature of infinite sets, specifically focusing on the distinction between countable and uncountable sets within the context of real numbers and irrational numbers.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Some participants question the original poster's reasoning that a set can be uncountable simply because it contains more elements than a countable infinite set. Others suggest reconsidering the implications of Cantor's diagonalization argument and its relevance to the proof presented.

Discussion Status

The discussion is ongoing, with participants providing insights and raising questions about the assumptions made in the original proof. There is an exploration of the nature of infinite sets and the criteria for uncountability, indicating a productive exchange of ideas without reaching a consensus.

Contextual Notes

Participants note the importance of distinguishing between specific enumerations of sets and the broader implications of cardinality in infinite sets. The original poster's lack of experience in pure mathematics is acknowledged, which may influence the interpretation of the proof's validity.

serllus reuel
Messages
59
Reaction score
1
Here is what I have come up with. It seems pretty sound to me, but I have little experience in pure math and want to be sure. (I know the easiest way is to show that R is not countable, Q is, so the irrationals, R-Q, is not, but I was wondering about this proof.)

Consider the following numbers:
0.1223334444...
0.112222333333...
0.111222222...
... (When numbers of two or more digits are encountered, they repeat in the same way, e.g. in the first number we would have ...99999999910101010101010101010... )

These numbers are irrational, as they are non-repeating infinite decimals. They also form an countably infinite set, as they are infinite but can be listed.

However, for obvious reasons, ∏ is not included. Nor is e, √2, or many other irrationals.
Since the set of the irrationals contains more elements than a countable infinite set, it is uncountable. QED

Thanks for looking.
 
Physics news on Phys.org
serllus reuel said:
Here is what I have come up with. It seems pretty sound to me, but I have little experience in pure math and want to be sure. (I know the easiest way is to show that R is not countable, Q is, so the irrationals, R-Q, is not, but I was wondering about this proof.)

Consider the following numbers:
0.1223334444...
0.112222333333...
0.111222222...
... (When numbers of two or more digits are encountered, they repeat in the same way, e.g. in the first number we would have ...99999999910101010101010101010... )

These numbers are irrational, as they are non-repeating infinite decimals. They also form an countably infinite set, as they are infinite but can be listed.

However, for obvious reasons, ∏ is not included. Nor is e, √2, or many other irrationals.
Since the set of the irrationals contains more elements than a countable infinite set, it is uncountable. QED

Thanks for looking.
Just because you have a set that is "larger than" (has more elements than) some countably infinite set, that doesn't mean that the "larger" set is uncountably infinite. Consider the set {2, 4, 6, 8, ...}, which is a countably infinite set. By your reasoning (as I understand it), the set {1, 2, 3, 4, 5, 6, 7, 8, ...} is uncountably infinite because it has many more (an infinite number, actually) elements that are not also in the first set.
 
I get the idea that infinite sets can have the same cardinality even if they are of different "sizes", and that is part of my confusion, because I recall that sort of reasoning being employed successfully in other proofs, although probably I am misinterpreting it.

For example, Cantor's diagonalization argument for the uncountablility of the real numbers basically shows that there are more real numbers than the elements of a countable set.
 
serllus reuel said:
I get the idea that infinite sets can have the same cardinality even if they are of different "sizes", and that is part of my confusion, because I recall that sort of reasoning being employed successfully in other proofs, although probably I am misinterpreting it.

For example, Cantor's diagonalization argument for the uncountablility of the real numbers basically shows that there are more real numbers than the elements of a countable set.

Cantor's diagonal argument starts with ANY countable enumeration of the reals and then proves that must be another real. Your proof starts with a SPECIFIC enumeration of the irrationals and proves there must be another irrational. That's not good enough, as Mark44's example clearly shows. Infinite sets have proper subsets with the same cardinality. You have show that ANY countable list of the irrationals must leave out some irrational. Not just a specific one.
 
Last edited:
But Cantor's proof is a proof by contradiction where he assumes that the reals are countable. The proof assumes that all of the reals can be placed in a (very long) list. Then, by showing that there is a number that can't possibly be on the list, he arrives at a contradiction.
 
serllus reuel said:
I get the idea that infinite sets can have the same cardinality even if they are of different "sizes", and that is part of my confusion, because I recall that sort of reasoning being employed successfully in other proofs, although probably I am misinterpreting it.

For example, Cantor's diagonalization argument for the uncountablility of the real numbers basically shows that there are more real numbers than the elements of a countable set.

No, not exactly: it shows that any list (i.e., countable set) must contain a real not on the list. Therefore, you cannot list all of the real numbers. Cardinality arguments are not really part of the demonstration.
 
serllus reuel said:
Here is what I have come up with. It seems pretty sound to me, but I have little experience in pure math and want to be sure. (I know the easiest way is to show that R is not countable, Q is, so the irrationals, R-Q, is not, but I was wondering about this proof.)

Consider the following numbers:
0.1223334444...
0.112222333333...
0.111222222...
... (When numbers of two or more digits are encountered, they repeat in the same way, e.g. in the first number we would have ...99999999910101010101010101010... )

These numbers are irrational, as they are non-repeating infinite decimals. They also form an countably infinite set, as they are infinite but can be listed.

However, for obvious reasons, ∏ is not included. Nor is e, √2, or many other irrationals.
Since the set of the irrationals contains more elements than a countable infinite set, it is uncountable. QED

Thanks for looking.

If a set of numbers contains "more elements" than a countable infinite set, that doesn't necessarily mean the set is uncountable.

Look at the set of all integers and the set of all even integers. The set of all integers has more elements than the set of all even integers. The set of all even integers is a countable infinite set. The set of all integers is countable not uncountable.
 
shortydeb said:
If a set of numbers contains "more elements" than a countable infinite set, that doesn't necessarily mean the set is uncountable.

Look at the set of all integers and the set of all even integers. The set of all integers has more elements than the set of all even integers. The set of all even integers is a countable infinite set. The set of all integers is countable not uncountable.

See post #2. This is pretty much what I said.
 

Similar threads

Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K