monet A
- 67
- 0
To find dy/dx for
y = ln(sin^{-1}(x))
I did this:
<br /> y = ln(sin^{-1}(x)) <br />
so
<br /> e^y = (sin^{-1}(x)) <br />
and
<br /> e^y \frac {dy}{dx} = \frac {1} {\sqrt{1-x^2}} <br />
then
<br /> \frac {dy}{dx} = \frac {1}{\sqrt {1-x^2} * e^y} <br />
<br /> = \frac {1}{\sqrt {1-x^2} * e^{ln(sin^{-1}(x))}} <br />
<br /> = \frac {1}{\sqrt {1-x^2} * (sin^{-1}(x))}} <br />
I think that its all valid implicit differentiation but I m not 100% confident about it, please help.

y = ln(sin^{-1}(x))
I did this:
<br /> y = ln(sin^{-1}(x)) <br />
so
<br /> e^y = (sin^{-1}(x)) <br />
and
<br /> e^y \frac {dy}{dx} = \frac {1} {\sqrt{1-x^2}} <br />
then
<br /> \frac {dy}{dx} = \frac {1}{\sqrt {1-x^2} * e^y} <br />
<br /> = \frac {1}{\sqrt {1-x^2} * e^{ln(sin^{-1}(x))}} <br />
<br /> = \frac {1}{\sqrt {1-x^2} * (sin^{-1}(x))}} <br />
I think that its all valid implicit differentiation but I m not 100% confident about it, please help.

Last edited: